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Preface

At the request of the 96th Test Wing of the U.S. Air Force and Air Force Ma-
teriel Command, the National Academies of Sciences, Engineering, and Medicine 
were asked to convene a committee to conduct a consensus study to examine the 
Air Force Test Center’s technical capabilities and capacity to conduct rigorous and 
objective tests, evaluations, and assessments of artificial intelligence (AI)-enabled 
systems under operational conditions and against realistic threats.

The National Academies of Sciences, Engineering, and Medicine appointed the 
Committee on Testing, Evaluating, and Assessing Artificial Intelligence-Enabled 
Systems Under Operational Conditions for the Department of the Air Force to 
conduct this study, per the Statement of Task found in Appendix A and Box P-1. 
The committee held its initial kickoff meeting in April 2022, conducted a data-
gathering workshop in June 2022 (a Proceedings of a Workshop—in Brief of which 
can be found in Appendix E), and held further data-gathering sessions throughout 
2022 and early 2023, including a site visit to Eglin Air Force Base. Agendas for the 
data-gathering meetings can be found in Appendix B. Biographies of the commit-
tee members can be found in Appendix C. Appendix D contains a list of acronyms 
and abbreviations used in the report.
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xiv P r e f a c e

BOX P-1 
Statement of Task

The National Academies of Sciences, Engineering, and Medicine will establish an ad hoc 
committee to (1) plan and convene a multi-day workshop and (2) conduct a consensus study 
to examine the Air Force Test Center’s technical capabilities and capacity to conduct rigorous 
and objective test, evaluation, and assessments of artificial intelligence (AI)-enabled systems 
under operational conditions and against realistic threats. Specifically, the committee will:

1.	 Evaluate and contrast current testing and assessment methods employed by the Depart-
ment of the Air Force and in commercial industry.

2.	 Consider examples of AI corruption under operational conditions and against mali-
cious cyberattacks.

3.	 Recommend promising areas of science and technology that may lead to improved 
detection and mitigation of AI corruption.

The committee will provide workshop proceedings—in brief and in a report summarizing 
the results from the consensus study.
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Summary

The Department of the Air Force’s (DAF’s) Air and Space Forces stand on the 
shoulders of 75 years of comprehensive, rigorous service-wide test and evalua-
tion (T&E) policies, processes, and practices. The combination of a large cadre 
of designated test personnel, sustained funding, dedicated test organizations, test 
infrastructure, career-long T&E education and training, and a unique test culture 
have been instrumental in shaping the current force. Absent a highly disciplined 
systems engineering approach to testing and the continuous focus on T&E in every 
aspect of operations, today’s DAF would be far less capable and safe.

In requesting this study on testing, evaluating, and assessing the performance of 
artificial intelligence-enabled systems under operational conditions, DAF leaders rec-
ognize both the opportunities and challenges inherent in integrating artificial intelli-
gence (AI) at speed and at scale across the DAF. Integration of AI-enabled capabilities 
into the DAF has been limited, with a slow pace of adoption so far. The demand for 
and integration of such capabilities is expected to accelerate substantially based on 
current trends and expected technological developments in AI and related fields.

In its final report published in March 2021, the National Security Commis-
sion on AI (NSCAI) noted that “having justified confidence in AI systems requires 
assurances that they will perform as intended when interacting with humans and 
other systems. The T&E of traditional legacy systems is inefficient at providing 
these assurances. To minimize performance problems and unanticipated outcomes, 
an entirely new type of T&E will be needed.”1 The NSCAI recommended that all 

 �1 National Security Commission on Artificial Intelligence, 2021, The National Security Commission  
on Artificial Intelligence Final Report, Arlington, VA, https://www.nscai.gov/wp-content/uploads/ 
2021/03/Full-Report-Digital-1.pdf, p. 137.
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the military Services should “establish a test, evaluation, verification, and valida-
tion (TEVV) framework and culture that integrates testing as a continuous part of 
requirements specification, development, deployment, training, and maintenance 
and includes runtime monitoring of operational behavior.”2 This committee echoes 
this NSCAI recommendation.

DAF leaders must now address the pervasive implications of AI T&E across 
the entire DAF. The DAF has not yet prioritized AI T&E in a way that matches 
its historical investments in its other T&E capabilities. For example, DAF has not 
developed a cadre of DAF-wide AI experts or implemented the requisite AI T&E 
frameworks. Similarly, the DAF has not established enterprise-level T&E policies 
and infrastructures to support testing autonomous or AI-enabled autonomous 
systems, either in isolation or in integrated within system-of-systems architectures. 
Instead, T&E of current AI capabilities has largely relied on ad hoc and bespoke 
processes and procedures. The ad hoc nature of current DAF AI T&E and the lack 
of formal guidance complicated this committee’s efforts to evaluate current assess-
ment methods employed by the DAF. Much greater investments are needed in AI 
T&E than previous T&E resources; partially because previous T&E was notoriously 
under-resourced and because AI systems are so complex. However, these have been 
boosted over the past 2 years by the work of the AI T&E Community of Interest 
(CoI) established by the Office of the Secretary of Defense (OSD) Joint Artificial 
Intelligence Center (JAIC). As discussed in this report, the DAF cannot presently 
successfully incorporate AI-based solutions. Without significant improvements to 
the DAF’s ability to test and evaluate AI, the DAF will be unable to successfully 
incorporate AI into DAF systems. To acknowledge the NSCAI’s findings and as-
sociated recommendations for AI T&E and to enable the DAF to field AI-enabled 
capabilities that are highly effective, safe, and used responsibly, DAF leaders must 
prioritize AI T&E. They should do so in a way that, as the committee describes in 
more detail throughout the report, recognizes the importance of AI T&E through-
out the entire AI life cycle, rather than segregated into distinct developmental test 
and evaluation and operational test and evaluation (OT&E) phases as with tradi-
tional weapon systems (see Section 3.2). The committee found that this prioritiza-
tion includes but is not limited to:

•	 Fostering a unique AI T&E culture
•	 Establishing DAF-wide AI T&E governance with sufficient authority
•	 Dedicated and sustaining the resources necessary for AI T&E
•	 Integrating data collection and curation into the AI T&E pipeline
•	 Creating the virtual environments and simulations necessary to create 

simulated data or to use for reinforcement machine learning

 �2 Ibid, p. 384.
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•	 Emphasizing human-systems integration (HSI) such as for human-AI 
teaming

•	 Developing the AI T&E workforce

These shortcomings underscore the challenges the entire federal government 
faces in establishing organization- and agency-wide AI T&E processes and proce-
dures. Unlike digital-age technology companies that rapidly embrace AI capabili-
ties, the DAF is analogous to traditional companies that are only now beginning 
to adopt AI technologies across their respective industries. Therefore, it is an op-
portune time for the DAF to craft an AI T&E vision and commit to a long-range 
AI T&E strategy and implementation plan that includes specific and measurable 
objectives and goals. There is no time to waste: the risks to the DAF from remaining 
“frozen in place” regarding AI T&E are significant and will increase exponentially 
over time. The DAF will only gain ground through the prioritization of AI T&E and 
commensurate near-term commitment of resources. Rigorous and comprehensive 
end-to-end T&E of AI-enabled capabilities will significantly increase the DAF’s 
ability to field systems while also allowing end-users to gain justified confidence 
in AI-enabled systems and tools.

As demonstrated by previous examples of AI projects carried out at scale and 
both DoD- and industry-wide digital modernization programs, leaders commonly 
underestimate the investments of time, expert human resources, and money re-
quired to implement digital modernization and establish modern AI data man-
agement best practices. Without accelerating digital modernization3 of the DAF’s 
underlying T&E infrastructure, to include information architecture and commit-
ment to a DAF-wide T&E data strategy and implementation plan,4 the DAF will 
struggle to assess AI-enabled solutions at the required scale. Therefore, the com-
mittee recommends that the DAF immediately update its comprehensive analysis of 
resource requirements immediately to ensure AI T&E digital modernization efforts 

 �3 This digital modernization across the AFTC, AFOTEC, and USAFWC includes but is not limited 
to prioritizing (and sustaining) funding for and rapidly installing AI stacks (AI tools, modern software 
platforms, data libraries, and providing access to the same computing environments and information 
technology architectures available to the nation’s leading commercial technology companies). The 
2022 establishment of the Autonomy, Data, and AI Experimentation (ADAX) proving ground at Eglin 
AFB as a joint venture between CDAO and AFWERX, supported by the Eglin AFB test ecosystem, is 
an encouraging first step. One of ADAX’s missions is to assess the viability of commercial technolo-
gies for Air Force adoption. The ADAX team is coordinating with the DAF ABMS program office 
to develop initial use cases. Once a technology is determined to be suitable for integration, ADAX 
personnel will design an Air Force AI test plan. In July 2022, the Air Force Test Center published its 
own “Digital Modernization Strategy” and initiated three digital engineering efforts. The committee 
recommends including AI T&E as part of these efforts.

 �4 Department of Defense, 2020, “DoD Data Strategy,” https://media.defense.gov/2020/Oct/08/ 
2002514180/-1/-1/0/DoD-Data-Strategy.pdf.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

T e s t  a n d  E v a l u a t i o n  C h a l l e n g e s  i n  AI  - E n a b l e d  S y s t e m s 4

are included in the DAF’s overarching digital transformation plans and take steps 
to sustain AI T&E resources in future DAF budgets.

The magnitude of changes this report suggests will require dedicated lead-
ership, continuous oversight, and individual responsibility and accountability. 
These outcomes are best attained by formally designating a senior AI T&E official 
who reports to the secretary of the air force, is responsive to the chiefs of the air 
and space forces, and who has the necessary resources and authorities to imple-
ment DAF-wide changes. For this reason, the committee recommends that the 
secretary of the air force formally designate an overall DAF AI T&E champion at 
the general officer or senior executive service level in the DAF and grant them the 
necessary authorities to execute DAF-wide changes on the behalf of the secretarys 
and chiefs of the two Services.5 The 2022 dual-hat designation of the 96th Opera-
tions Commander as the Chief of AI Test and Operations for the DAF Chief Data 
and AI Office (CDAO) is a positive and important step. The committee views 
the 96 OG and CC as one of the primary beneficiaries of this report. However, 
as currently constituted, the chief of AI test and operations for the DAF CDAO 
does not have the authority to make the scope and scale of changes across the 
DAF this committee believes necessary to enable and accelerate AI T&E. There-
fore, the DAF needs a formally-designated advocate with an appropriate breadth 
and depth of AI and T&E experience, along with the commensurate background 
and expanded authorities, responsibility, and resources. This champion should 
establish an AI governance structure that includes delineating formally AI T&E 
reporting relationships and roles and responsibilities across the Tri-Center,6 the 
future U.S. Space Force Operational Test Agency (OTA),7 the DAF CDAO, and 
operational air, intelligence, command and control (C2), space, and cyber units. 
This process should include assessing what broader DAF-wide organizational and 

 �5 The committee uses the term “champion” as illustrative; it does not take a position on the actual 
title, or whether the designated official should be a general officer or civilian senior executive, or 
whether the position should reside within the AFTC, AFOTEC, the U.S. Air Force Warfare Center, or 
elsewhere. The committee notes, however, that this individual will be required to coordinate AI T&E 
roles and responsibilities across the three primary DAF test and evaluation commands (AFMC, ACC, 
and AFOTEC) and the DAF Chief Data and AI Office (CDAO). Additionally, while the committee 
calls for a single DAF AI champion, the committee acknowledges the potential benefits of designating 
separate AI T&E champions for both the air force and the space force. The committee recommends 
that the DAF analyze the potential benefits and drawbacks of these various options, with the goal to 
designate the individual(s) as soon as possible.

 �6 Comprising the Air Force Test Center (AFTC) (Air Force Materiel Command, to include the AFMC 
Digital Transformation Office or DTO); the United States Air Force Warfare Center (USAFWC) (Air 
Combat Command); and the Air Force Operational Test and Evaluation Center (AFOTEC) (CSAF).

 �7 If established.
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governance changes are needed to reflect the differences between AI T&E and 
T&E for all other air force systems and capabilities.8

There are many similarities between the T&E of aircraft, weapons, sensors, 
command and control, and cyber systems and the T&E of AI-enabled systems. 
Most importantly, the same basic systems engineering principles that have proven 
instrumental in fielding all previous DAF capabilities are equally applicable to AI. 
Therefore, the foundational systems theory concepts that have served the DAF so 
well over the past 75 years provide the appropriate starting point for crafting DAF 
AI T&E strategies and implementation plans.9

In view of AI as a software-centric capability, however, major differences drive 
the need for a new approach to several critical aspects of AI T&E.

The major differences include:

•	 The lack of a clear demarcation between the developmental test (DT) and 
operational test (OT) or between initial operational T&E (IOT&E) and 
follow-on operational T&E (FOT&E) for AI capabilities.

•	 The importance of and reliance on iterative and incremental (agile devel-
opment approaches) software development and adaptive T&E principles 
(AIOps or DevSecOps, see Section 3.2) instead of linear and sequential 
(waterfall) software development for AI systems.

•	 The centrality of data (including the potential for skewed, corrupted, or 
incomplete datasets) also necessitates the emphasis on its collection, cura-
tion, and high-end computing.

•	 A continuous data-based learning capability that continually changes 
fielded AI systems necessitates continued testing.

•	 The importance and challenges of domain adaptation for AI-enabled 
systems.

•	 Probabilistic or statistically predictable (i.e., non-deterministic) behavior.
•	 The effects and risks of adversarial attacks against AI models.
•	 The challenges of AI explainability and auditability.

 �8 This should include evaluating the success of past integrated T&E efforts, such as combined test 
forces with matrixed OT and DT personnel from across the Tri-Center and assessing their utility for 
DAF-wide AI T&E projects. The Operational Flight Program-Combined Test Force (OFP-CTF) at 
Eglin AFB, with a rotating DT and OT commander with authority to direct efforts using resources 
from both the USAFWC and AFTC, serves as a useful reference point.

 �9 See Department of Defense, 2023, “Autonomy in Weapon Systems,” DoD Directive 3000.09. Of-
fice of the Under Secretary of Defense for Policy, https://www.esd.whs.mil/portals/54/documents/
dd/issuances/dodd/300009p.pdf. This is one example of a current DoD policy that bridges the gap 
between hardware- and software-centric weapon systems. This directive establishes requirements for 
TEVV of autonomous and semi-autonomous weapon systems, to include AI-enabled capabilities.
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•	 Continuous integration and continuous delivery (CI/CD) for fielded AI-
enabled systems requires commensurate T&E.

•	 New T&E AI methods, tools, and processes geared toward identifying and 
addressing AI-related cyberattacks and their effects throughout the testing 
and operational life cycle of an AI system.

•	 The importance of adding instrumentation to fielded AI-enabled systems to 
monitor their performance over time, including metrics to log and analyze 
changes, since the performance and metrics change with continuous learning.

As the committee explains later in the report, these differences will also drive 
changes to existing requirements formulation processes for new AI capabilities and 
AI-enabled systems and how performance metrics are used and evaluated during 
testing (see Section 5.5).

The difficulty of defining comprehensive T&E requirements for software-
centric capabilities is that the “black box” performance under operational condi-
tions could change continually based on the ingestion of more data that generate 
probabilistic or statistically predictable behavior rather than deterministic results. 
The intersection of these two equally important considerations leads to a funda-
mental and persistent challenge for AI T&E today: understanding what require-
ments to test against when performing T&E for new or fielded AI systems.

The importance of human-system interfaces was one of the other resounding 
themes throughout this period of study. AI’s enormous potential will never be un-
leashed without changing how humans and machines interact in a more digitized 
future. While human-system integration (HSI) has been studied extensively over the 
past 50 years, it is evident that the kinds of AI anticipated soon will demand a different 
approach to how humans learn to work with “smart” machines. User interface and 
user experience (UI/UX) are more important than ever, yet much more analysis is 
needed to understand how to optimize HSI and assess the performance of human-
machine interfaces. Optimizing the integration of humans and AI-enabled machines, 
which in turn depends on redesigning human-machine interfaces and recalibrating 
human and machine roles and responsibilities, will be one of the most important 
and defining features of an AI-enabled future. HSI and human-AI team effectiveness 
must be considered during the T&E of AI-enabled systems.

As the committee’s work proceeded, the committee determined that the AI 
T&E questions the DAF asked the committee to consider are intimately and in-
extricably related to larger issues of AI-based system acquisitions within the DAF. 
Thus, the committee realized that only by placing these questions within this larger 
context can they be properly understood and addressed, with resulting actionable 
recommendations. This report, therefore, follows and builds on this theme from 
chapter to chapter.

Chapter 1 reviews the current state of AI in the DAF. It finds that the DAF is 
in the early stages of incorporating modern AI implementations (see Section 1.3) 
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into its systems and operations. It has not yet acquired modern AI capability 
within the standard acquisition processes of a major defense acquisition pro-
gram (MDAP) or major automated information system (MAIS). Chapter 1 also 
discusses what the committee means by AI, and several different categories of AI 
implementation. Chapter 1 also reports that DAF AI-related projects have been 
research and development initiatives, proof-of-concept demonstrations, or inte-
grated into existing systems as upgrades or prototypes. The chapter notes that 
in the absence of AI-specific DoD and DAF standards, current DAF prototyp-
ing projects have adopted ad hoc acquisition and T&E processes. These ad hoc 
methods, by nature, do not scale, nor are they consistent. However, the projects 
reviewed mostly followed sound commercial practices. The chapter ends with a 
detailed case study of Project Maven. The lessons learned in Project Maven serve 
as signposts whose themes inform much of the report’s findings and recommen-
dations. In particular, the chapter highlights how Project Maven, as a pathfinder 
AI program within DoD, underscored the importance of rigorous T&E, adopting 
and adapting industry best-practices, and staying abreast of new ideas from the top 
AI researchers in academia. Project Maven and other examples from this chapter 
emphasize the need to retrain AI models to meet unanticipated and changing 
operational conditions.

Chapter 2 reviews AI and AI-based systems to establish definitions and intro-
duce salient aspects of AI and AI-related technologies. The chapter points out the 
fundamental importance of data within the machine learning training and testing 
processes. The chapter presents a historical overview of AI and AI test and evalu-
ation before discussing human-machine teaming. It then proceeds to a detailed 
discussion of adjusting the evolution of DAF T&E protocols in response to the 
rapid pace of AI technology advances. The chapter notes a higher level of trust in 
existing non-AI-enabled systems garnered through years of user familiarity with 
such systems and continual refinement in specialized T&E approaches. It observes 
that the DAF T&E community is especially adept at assessing and optimizing 
human-machine interactions for its piloted weapon systems. However, the chapter 
concludes that DAF T&E practices neglect important aspects of AI-based HMI 
(human-machine interface). In particular, it concludes that the DAF needed to refo-
cus all of its acquisition, T&E, operation, and sustainment processes on gaining user 
trust for deployed and emerging AI-enabled systems. It discusses how human-AI 
interfaces present new challenges as responsibilities shift between humans and in-
telligent machines and new concepts of operations (CONOPS) emerge. The chapter 
notes that inexperience in a future environment characterized by the widespread 
fielding of AI-enabled systems, the DAF would only be able to achieve maximum 
performance by focusing specifically on superior human-system integration. The 
chapter concludes by emphasizing the importance of giving more prominence to 
Human Readiness Levels (HRL) and UI/UX for AI-enabled military systems and 
revamping how future military systems are designed for a more digital future.
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Chapter 2 offers a key finding and recommendation in the area of human-
system integration, or HSI.

Finding 2-1: The DAF has not yet developed a standard and repeatable pro-
cess for formulating and assessing HSI-specific measures of performance and 
measures of effectiveness.

Conclusion 2-1: The future success of human-AI systems depends on optimizing 
human-system interfaces. Measures of performance and effectiveness, to include 
assessments of user trust and justified confidence, must be formulated during 
system design and development, and assessed throughout test and evaluation and 
after system fielding.

Recommendation 2-1: Department of the Air Force (DAF) leadership should 
prioritize human-system integration (HSI) or HSI across the DAF, with an 
emphasis on formulating and assessing HSI-specific measures of perfor-
mance and measures of effectiveness across the design, development, testing, 
deployment, and sustainment life cycle.

Chapter 3 reviews the historical, traditional approach to T&E in the Air Force 
and then discusses why current practices are insufficient for effective T&E of AI-
based systems—particularly the lack of clean lines between developmental test and 
evaluation (DT&E) and operational test and evaluation (OT&E) for AI capabili-
ties. The chapter observes the lack of formal DoD and DAF AI T&E standards and 
policies. It notes that seminal specifications from CDAO are emerging however, 
and that the committee expects OSD Director of Operational Test and Evaluation 
(DOT&E) will adapt CDAO’s frameworks and playbooks and will promulgate the 
new products DoD-wide.The chapter highlights that OSD DOT&E has provided 
an initial roadmap for redesigning T&E for DoD AI-enabled systems to reflect the 
substantial differences between the T&E of traditional DoD systems and the T&E of 
AI capabilities. The chapter also reviews the role of AI and Development, Security, 
and Operations (DevSecOps)/AIOps and notes the importance of accelerating the 
use of agile methodologies across the DAF and designing Artificial Intelligence for 
IT Operations (AIOps) architectures as a critical part of the AI life cycle. The chapter 
notes that over the last decade, the commercial sector, particularly the autonomous 
vehicle industry (see Section 3.2), has employed and refined agile methods to signifi-
cantly advance the design and deployment of T&E methodologies for safety-critical 
AI-enabled systems. It also notes that the AIOps solutions designed for commercial 
applications will not meet the operational requirements of the DAF. This chapter 
introduces the concept of justified confidence as a progressive measure of trustwor-
thiness and notes that developers, testers, and users should gain justified confidence 
in AI-enabled systems over time as they become increasingly familiar with system 
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performance limits and behaviors. Next, the chapter discusses AI assurance, another 
term that, along with justified confidence and trustworthiness, replaces the binary 
concept of trust when referring to AI-enabled systems. The chapter ends with ana-
lyzing operationally oriented risks pertaining to integrating AI capabilities into DAF 
systems. It emphasizes that when fielding AI-enabled capabilities under operational 
conditions, DAF end-users, program offices, DevSecOps or AIOps teams, testers, 
and leaders must use a tailored AI Risk Management Framework (RMF), such as the 
National Institute of Standards and Technology (NIST) AI RMF, to address a series 
of risk-related questions at each stage of the AI life cycle. Chapter 3 develops a series 
of findings, conclusions, and recommendations:

Finding 3-1: The DAF will have similar training infrastructure requirements 
to support the development and maintenance of AI-enabled systems. The 
decentralized nature of DAF operations means training cannot be supported 
by standard commercial offerings. The committee knows of no commercial 
off-the-shelf solution presently supports these requirements.

Recommendation 3-1: The Department of the Air Force artificial intelligence 
testing and evaluation champion should outline and prioritize these training 
infrastructure requirements and coordinate with commercial providers to 
adapt available solutions accordingly.

Finding 3-2: The DAF has not yet developed a standard and repeatable process 
for integrating, testing, acquiring, developing, and sustaining AI capabilities.

Finding 3-3: OSD DOT&E has not yet published DoD-wide formal AI T&E 
guidance.

Finding 3-4: There is a lack of clear distinction between DT and OT phases 
for AI capabilities.

Conclusion 3-1: A lack of formal AI development and T&E guidance represents a 
considerable challenge for the DAF as AI-based systems emerge.

Recommendation 3-2: Department of the Air Force (DAF) leadership should 
prioritize artificial intelligence testing and evaluation (AI T&E) across the 
DAF with an emphasis on a radical shift to the continuous, rigorous techni-
cal integration required for holistic T&E of AI-enabled systems across the 
design, development, deployment, and sustainment life cycle.

Recommendation 3-3: The Department of the Air Force should track the 
progress of the International Organization for Standardization/International 
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Electrotechnical Commission TR 5469 working group report through the 
publication process and leverage it as a starting point for adapting their testing 
and evaluation processes for artificial intelligence–enabled systems.

Finding 3-5: DAF AI contributions to date have been focused on computer 
vision perception and natural language processing algorithms and have yet to 
extend to fully address system-level T&E.

Recommendation 3-4: The Department of the Air Force should adopt a 
definition of artificial intelligence (AI) assurance in collaboration with the 
Office of the Secretary of Defense Chief Digital and AI Office. This defini-
tion should consider whether the system is trustworthy and appropriately 
explainable; ethical in the context of its deployment, with characterizable 
biases in context, algorithms, and datasets; and fair to its users.

Recommendation 3-5: The Department of the Air Force should develop 
standardized artificial intelligence (AI) testing and evaluation protocols to 
assess the impact of major AI-related risk factors.

Chapter 4 proposes appointing a DAF AI T&E champion and explores the chal-
lenges in defining comprehensive T&E requirements for AI capabilities compared to 
traditional DAF weapon systems. The chapter discusses Project Maven as a require-
ments use case and recommends options for establishing AI T&E requirements and 
increasing interactions between system designers, developers, testers, program offices, 
and end-users throughout the AI life cycle. This chapter discusses the value of indepen-
dent red teams as a critical component of the overarching requirements process and AI 
test design. Finally, in examining the role of culture and workforce development, the 
chapter observes the challenge of adapting a highly successful DAF test culture to the 
era of AI T&E. It emphasizes the immediate education, training, and certification steps 
that DAF leaders need to take to build and sustain an AI-ready test enterprise workforce.

Chapter 4 contains most of the committee’s recommendations, as follows:

Finding 4-1: Currently, no single person below the level of the secretary or the 
chiefs of the Air and Space Forces has the requisite authority to implement 
DAF-wide changes to successfully test and evaluate AI-enabled systems.

Recommendation 4-1: The secretary of the Air Force and chiefs of the Air and 
Space Forces should formally designate a general officer or senior civilian execu-
tive as the Department of the Air Force (DAF) artificial intelligence (AI) testing 
and evaluation (T&E) champion to address the unique challenges of T&E of 
AI systems identified above. This AI T&E advocate should have the necessary 
AI and T&E credentials, and should be granted the requisite authorities, and 
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responsibilities, and resources to ensure that AI T&E is integrated from program 
inception and appropriately funded, realizing the DAF AI T&E vision.

Conclusion 4-1: Compared to traditional T&E, AI T&E requires radically deeper 
continuous technical integration among designers, testers, and operators or 
end-users.

Recommendation 4-2: The Department of the Air Force should adopt a more 
flexible approach for acquiring artificial intelligence (AI)-enabled capabili-
ties that whenever possible links proposed solutions to existing joint capa-
bilities integration and development system requirements, and that follows 
a development, security, and operations or AI for information technology 
operations/machine learning operations development methodology.

Recommendation 4-3: To the maximum extent possible and where it makes 
sense operationally, the Department of the Air Force (DAF) should integrate 
artificial intelligence (AI) requirements into programs of record, via the 
DAF’s system program offices and program executive officers, and integrate 
AI testing and evaluation (T&E) into the host weapon system T&E master 
plan.

Recommendation 4-4: The Department of the Air Force should establish an 
activity focused on robust artificial intelligence–based systems red-teaming, 
implement testing against threats the red-teaming uncovers, and coordinate 
its investments to explicitly address the findings of red-team activities and 
to augment research in the private sector.

Recommendation 4-5: Building off the 2020 DoD Data Strategy, the Depart-
ment of the Air Force should update and promulgate its data vision, strategy, 
and metrics-based implementation plan to explicitly recognize data as a 
“first-class citizen.” These documents should include plans for the following:

•	� Prioritizing investments in computation and storage resources and 
infrastructure to support artificial intelligence (AI) development

•	� Widely expanding data collection and curation for the entire range 
of AI planning and scoping, designing, training, evaluation, and feed-
back activities

•	 Investing in data simulators for AI training and testing
•	� Adapting approaches and architectures developed in private industry 

for AI-based systems

Recommendation 4-6: The Department of the Air Force (DAF) should in-
culcate an artificial intelligence (AI) testing and evaluation (T&E) culture 
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espoused by DAF leaders and led by the AI T&E champion. In particular, the 
DAF and the DAF AI champion should:

•	� Provide AI education, training, and, where applicable, certifications 
to all personnel, from general officers and senior civilian executives 
to entry-level personnel

•	� Institute career-long tracking and management of personnel with 
specific AI and AI T&E skills

•	 Place core AI T&E training under the Air Force Test Center
•	 Take advantage of existing AI-related education and training initiatives

Recommendation 4-7: The Department of the Air Force (DAF) should deter-
mine the current baseline of artificial intelligence (AI) and AI test and evalu-
ation (T&E) skills across the DAF, develop and maintain a tiered approach 
to AI and AI T&E-specific education and training, rebalance the test force by 
shifting people with needed expertise into the test enterprise, and consider 
placing personnel with AI T&E expertise into operational units.

Chapter 5 evaluates AI technical risks in DAF operational systems. It dis-
cusses how the employment of AI-enabled systems can have significant benefits 
in augmenting the capabilities of the warfighter. Still, it also notes that there are 
risks inherent in the use of AI-enabled systems that the DAF must address. This 
chapter observes that AI-enabled systems are vulnerable to several realistic per-
formance issues, some based on adversarial AI attacks and others based on the 
risk of deploying the AI-enabled system in operational environments that have 
features or contexts that differ significantly from the representative datasets and 
intended contexts that were used to develop the AI capability. The chapter reviews 
the numerous attacks adversaries could potentially direct toward AI models within 
operational systems. The chapter observes that while AI models were subject to the 
same attacks as other software products, they were also vulnerable to AI-unique 
attack vectors that manipulated the training data, operational data, or the models 
themselves. It concludes that the DAF needed a staunch cyber defense as the first 
defense against such attacks. DAF T&E processes should likewise focus on detect-
ing performance degradations and AI model susceptibility to classes of adversarial 
examples designed to avoid detection. Finally, it describes certain attacks, such as 
backdoor attacks involving adversarial triggers, that may be undetectable before 
they trigger with state-of-the-art test technologies.

The chapter discusses how academic research and development progress in 
this area has become an escalatory battle between attackers and defenders. Conse-
quently, the chapter concludes that it would be important for the DAF to employ 
red-teaming of AI-based system vulnerabilities and to develop mitigations such as 
operational performance monitors. Furthermore, this chapter notes that DAF T&E 
would have an important role to play in emulating attacks identified by the red 
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teams and testing operational systems against these attacks. Finally, the chapter also 
discusses how AI models can fail in ways that are unexpected and non-intuitive. 
Therefore, it concludes that the DAF should focus on extensive testing to establish 
justified confidence in the deployed models.

Chapter 5 also makes a series of findings, conclusions, and recommendations:

Finding 5-1: Existing research on attacks on AI-enabled systems and strate-
gies for mitigating them consider attacks that require unimpeded access to an 
underlying AI model. These attacks are unlikely to be practical with traditional 
protections and mitigations inherent in deployed DAF systems.

Finding 5-2: Ongoing research on adversarial attacks on AI-enabled systems 
focus on performance on benchmark datasets which are inadequate for 
simulating operational attacks. It appears that as robustness to adversarial 
attacks is improved, the performance often goes down. Even on bench-
mark datasets, the trade-off between potential performance reduction and 
improved robustness is not understood. More importantly, the defenses 
are designed to thwart known attacks. Such pre-trained defenses are not 
effective for novel attacks.

Finding 5-3: The impact of adversarial attacks on human-AI enabled systems 
has not been well understood.

Recommendation 5-1: The Department of the Air Force (DAF) should fund 
research activities that investigate the trade-offs between model resilience 
to adversarial attack and model performance under operational conditions. 
This research should account for a range of known and novel attacks whose 
specific effects may be unknown, but can be postulated based on state-of-
the-art research. The research should explore mitigation options, up to and 
including direct human intervention that ensures fielded systems can con-
tinue to function even while under attack. The DAF should also simulate, 
evaluate, and generate defenses to known and novel adversarial attacks as 
well as quantitatively determine the trade-off between potential loss of per-
formance and increased robustness of artificial intelligence–enabled systems.

Recommendation 5-2: The Department of the Air Force (DAF) should ap-
ply the DoD Zero Trust Strategy to all DAF artificial intelligence–enabled 
systems.

Conclusion 5-1: Promising areas of research that will improve the mitigation of 
adversarial AI include techniques for data sanitization, quantifiable uncertainty, 
and certifiable robustness.
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Chapter 6 turns its attention to new and promising AI techniques and capabili-
ties. It contends that even as the DAF addresses its current needs and opportunities, 
it must evaluate these emerging AI trends and their likely implications for T&E. 
Finally, the chapter observes that it is difficult to make precise predictions about 
which future AI capabilities will be most impactful for air force applications, espe-
cially given the accelerating rate at which AI technology advances. Nevertheless, it 
hypothesizes that five areas are particularly likely to impact DAF T&E: foundation 
models, informed machine learning, generative AI, trustworthy AI, and gaming AI 
for complex decision-making. It makes findings and recommendations accordingly.

Recommendation 6-1: The Department of the Air Force should focus on the fol-
lowing promising areas of science and technology that may lead to improved de-
tection and mitigation of artificial intelligence (AI) corruption: trustworthy AI, 
foundation models, informed machine learning, AI-based data generators, AI 
gaming for complex decision-making, and a foundational understanding of AI.

Finding 6-1: Existing approaches for designing trustworthy AI-enabled systems 
do not consider the role of humans who interact with the AI-enabled systems.

Recommendation 6-2: The Department of the Air Force should invest in de-
veloping and testing trustworthy artificial intelligence (AI)-enabled systems. 
Warfighters are trained to work with reliable hardware and software-based 
advanced weapon systems. Such trust and justified confidence must be de-
veloped with AI-enabled systems.

Finding 6-2: Large language FMs exhibit a behavior termed “hallucination,” 
where the model output is either non-sensical or is not consistent with the pro-
vided input or context. The effects of hallucination are task-dependent. There 
are no metrics to assess the impact of large FMs on the various downstream 
applications, they have been applied to.

Finding 6-3: Several large FMs are available for single modalies, with language 
being the most dominant one. DAF tasks may involve multi-modal sensing and 
inference. SSL-based large language models are just recently becoming available 
for multi-modal paired or unpaired data.

Finding 6-4: Physics-based and other knowledge-informed models have the 
potential to increase the robustness and computational efficiency of data-
driven methods. These models can also help enforce physics or knowledge-
based performance boundaries, which can increase the efficiency of the T&E 
process. However, to successfully deploy such models the DAF must ensure 
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that the parameters and assumptions upon which they are based are present 
during operations, which requires additional attention to operational T&E.

Recommendation 6-3: The Department of the Air Force should assess the 
capabilities of data generators to enhance testing and evaluation in the 
context of relevant applications.

Finding 6-5: Recent and anticipated advances in AI gaming technologies will 
enable the Air Force to build systems that are more capable than ever before 
and that involve AI in more sophisticated ways, but this increased system 
complexity will make the teaming relationship between the human and AI 
elements much more interrelated and complex, thereby placing additional 
challenges on effective T&E.
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1
Introduction

1.1 A CENTRAL QUESTION: HOW TO ACHIEVE SUFFICIENT 
CONFIDENCE IN AI-ENABLED SYSTEMS?

The Department of the Air Force (DAF) is in the early stages of incorporating 
modern artificial intelligence (AI) technologies into its systems and operations. 
The integration of AI-enabled capabilities across the DAF will accelerate over the 
next few years. As demonstrated by experiences in commercial industry, the DAF 
will face new opportunities and challenges in integrating AI at scale.

AI is different from aircraft, missiles, and other weapons and support systems, 
with which the DAF has decades of experience in testing and evaluation. Existing 
T&E processes and procedures do not translate directly to software capabilities, es-
pecially AI’s data-centric, black-box, self-learning, adaptive, and probabilistic char-
acteristics. As a result, it is harder to gain buy-in from the DAF, DoD, public, and 
international communities for and sufficient confidence in AI-enabled capabilities 
absent the same kind of testing policies and processes for AI implementations that 
have guided flight testing for the past 70 years. While similarities between tradi-
tional and AI T&E mean that the DAF is not starting from scratch, the substantial 
differences between them make it imperative that the test community develop and 
promulgate AI-specific T&E policies and procedures as soon as possible.

The complexity of AI T&E is amplified by the inevitability of a future in 
hybrid weapons systems, including a combination of legacy non-AI systems, 
new non-AI systems, current or legacy systems with AI that are “bolted on,” and 
AI that is “baked-in”—all of which may be operating together simultaneously. 
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Moreover, the T&E of AI-enabled systems must account for the cascading effects 
of multiple AI-enabled systems interacting across weapon systems, C2 architec-
tures, and cyber networks.

One may argue that “the purpose of test, evaluation, verification, and validation 
(TEVV) . . . is the activity that produces the evidence that completes the needed 
assurance arguments.”1 Thus, while considering AI T&E requirements and the 
above factors, a central question becomes clear: How to achieve sufficient confidence 
in AI-enabled systems?

Similarly, what level of T&E is necessary and sufficient throughout an AI-
enabled system’s entire life cycle to ensure the delivery of effective, suitable, reliable, 
predictable, sustainable, secure, safe, trustworthy, and resilient capabilities?

As described in this report, the answer to this question will likely be con-
siderably different for AI-enabled systems than for T&E of traditional hardware 
systems. It will be context-dependent, reflecting a combination of factors such as 
the degree of urgency; end-user requirements or operational imperatives; technol-
ogy and human readiness levels (TRLs/HRLs); risks, such as threats, opportunity 
costs, and potential unintended consequences; scope; scale, and required levels of 
predictability, reliability, explainability, and transparency. While considering these 
factors, the DAF should be guided, though not unduly constrained by the precau-
tionary principle—introducing a new product or process whose ultimate effects 
are disputed or unknown should be approached using caution, pause, and review.

Ultimately, the answer to how much testing is necessary and sufficient is defined 
as much by the end-user or operator as by the developers and the responsible DAF 
T&E organization. In all cases, end-users will assess the performance of AI-enabled 
capabilities relative to a given system’s baseline (pre-AI) performance. This report 
focuses on three main tasks that the study committee was tasked with, which will 
help the DAF address the fundamental question of how much testing is enough.2

1.2 STUDY QUESTIONS TO BE ADDRESSED

The study committee was tasked with conducting this consensus study to 
examine the Air Force Test Center’s (AFTC’s) technical capabilities and capacity 
to conduct rigorous and objective tests, evaluations, and assessments of artificial 

 �1 D.M. Tate, 2021, “Trust, Trustworthiness, and Assurance of AI and Autonomy,” Institute for 
Defense Analysis, https://apps.dtic.mil/sti/trecms/pdf/AD1150274.pdf, p. iv.

 �2 As well as what kind of testing is necessary—see, for example, R. Burnell, W. Schellaert, J. Burden, 
et al., 2023, “Rethink Reporting of Evaluation Results in AI,” Science 380:136–138, https://doi.
org/10.1126/science.adf6369.
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intelligence (AI)-enabled systems under operational conditions and against realistic 
threats. Specifically, the committee was asked to address three tasks:

Task 1 asks the committee to evaluate and contrast current testing and assess-
ment methods employed by the DAF and in commercial industry. This is discussed 
in more detail in Chapters 3 and 4.

Task 2 asks the committee to consider examples of AI corruption under op-
erational conditions and against malicious cyberattacks. This is discussed in more 
detail in Chapter 5.

Task 3 asks for recommendations promising areas of science and technology 
that may lead to improved detection and mitigation of AI corruption. This is dis-
cussed further in Chapter 6.

While the committee set out to maintain a narrow scope driven by the specified 
tasks, as the study progressed, it became clear that the impact of the findings and rec-
ommendations was more significant than anticipated. Central to the study’s assess-
ment of AFTC’s technical capabilities is the capacity to deploy these new systems with 
the same rigor and discipline they have applied historically with traditional systems. 
To ensure the same level of trust that the test community has rightly earned from the 
space, cyber, and air forces, the processes, requirements, and culture of the test com-
munity and the DAF, in general, will need to evolve and adapt. These adjustments will 
be necessary to accommodate the developmental differences in AI-enabled systems.

1.3 WHAT DO WE MEAN BY “ARTIFICIAL INTELLIGENCE”?

Artificial intelligence (AI) is a broad term that means different things to different 
people. For example, AI can be broadly defined as a computing system that can per-
form tasks that are normally associated with human intelligence, such as conversing in 
a natural language, solving problems, and recognizing types of objects in a scene, etc. 
Generally, AI is defined to include all such tasks that a computing system can perform 
at human or near human proficiency levels. The ability to learn is also an important 
aspect of any intelligent system. Recently, major advances have occurred in the field 
of machine learning, leading to an increase in proficiency across virtually all current 
AI tasks. Thus, to many, AI and ML are often used synonymously today, although 
machine learning is just one, albeit very important subset of AI implementation.

For the purposes of discussing test and evaluation (T&E), the committee 
divides AI implementations into three broad categories: element, independent 
system, or joint cognitive system.

•	 The implementation may be an element of a program or system that uses 
an artificial intelligence algorithm or knowledge structure. Examples are a 
route planner, ground avoidance, machine learning for target detection.
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•	 It may be an independent system, sometimes called a stand-alone, turnkey, 
or engineering system, that uses one or more intelligent elements coupled 
with other components (e.g., user interfaces) to produce results for a well-
specified problem domain. Examples include Project Maven, logistic, and 
recommender systems.

•	 An implementation might be a joint cognitive system, where one or more 
elements or systems are coupled with additional elements supporting 
human-AI interaction solving a joint problem or task. Neither the human 
nor the engineered system is capable of individually achieving the desired 
outcomes. An example is the aircraft itself, where neither the pilot and nor 
the engineered components can with multiple heterogenous AI elements 
achieve the mission without the other.

In each of the three cases, the breadth of the intelligence is bounded by the 
types of problems of interest. Creating an optimal route planner is similar to a 
savant—someone that is extraordinarily smart, but only about some specialized 
field. The intelligence for an independent system is likewise specialized for the 
purpose, though the AI elements and the integration may be more sophisticated 
than a single element and constitute a systems-level form of intelligence. A joint 
cognitive system may be focused on only one problem or mission but solving that 
problem or executing that mission requires true interaction with a human opera-
tor to specify objectives, dynamically delegate and reacquire authority, supervise, 
coordinate, etc. A joint cognitive system must include social intelligence to support 
the interaction with the human. For example, the introduction of natural language 
chatbots to a system interface may lead the human to erroneously expect the system 
to behave as a joint cognitive system, further complicating T&E.

The system complexity of each of the three categories varies as well. An element 
is not a system in the traditional NASA engineering system sense and thus, while 
the algorithm may be quite sophisticated and pose its own T&E challenges, there 
are few complications for testing and evaluation due to concomitant hardware, user 
interfaces, other software, etc. The enabling intelligence in an independent system 
is much harder to discern because it is embedded in a larger engineering construct. 
The joint cognitive system category presents the hardest case as the system is a 
system-of-systems with the human operator as one of those systems.

A third dimension distinguishing the categories is the type of user interaction. 
An element would typically have minimal user interaction, as it exists as an embed-
ded component of a system. A pilot may have a user interface for an independent 
system but might only be able to turn off or ignore the output from an element, 
assuming its contribution was obvious and accessible—for example, turning off 
the ground avoidance function. Joint cognitive systems differ from independent 
systems in that the user interaction for an independent system is generally through 
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user interfaces or fixed protocols; a joint cognitive system involves give-and-take 
interactions between the human and the computer, and introduces many of the 
human-machine teaming considerations discussed in Section 2.4.

These categories, summarized in Table 1-1, illustrate why testing and evaluation 
of AI is not a one-size-fits-all endeavor. Although the categories appear to restate 
decades of work in function (or unit), systems, and systems-of-systems testing, 
the breadth of intelligence, systems complexity, user interaction, and potential for 
both engineering and human error illustrates why AI imposes new demands on 
T&E. For example, a route planning algorithm element is straightforward to prove 
correctness as well as time and memory constraints but a convolutional neural 

TABLE 1-1  Categories of Artificial Intelligence Implementation

Intelligence
System 
Complexity

End-User 
Interaction Examples

Ramifications  
for Testing

Element Computation 
produces an 
exceptional, 
but narrow, 
skill or result

Little, 
generally 
producing a 
binary output 
or exists as a 
unit within a 
system

None, 
beyond either 
accepting 
or rejecting 
output

Route, ground 
avoidance, 
target 
detection, 
Bayesian 
models

Still involves 
functional or 
unit testing 
in isolation 
but depends 
on the unique 
vulnerabilities of 
the algorithms

Independent 
System

One or more 
elements 
coupled 
with other 
components 
to produce 
results for a 
well-specified 
problem 
domain

Generally, a 
function of 
the hardware, 
software, and 
application; 
involves 
combinations 
of different AI 
elements

Restricted; 
humans work 
through an 
interface or 
rigid protocols

Project Maven, 
logistics, 
recommender 
systems

Builds on 
systems testing 
principles but 
with multiple 
heterogenous AI 
elements

Joint Cognitive 
System

One or more 
systems 
coupled with 
additional 
social 
intelligence 
supporting 
human-AI 
interaction 
for a well-
specified 
problem 
domain

System 
includes 
true human 
interaction

Fluid, the 
interaction 
mechanisms 
and 
partitioning 
of roles must 
dynamically 
support team 
behavior

Pilot-aircraft System-of-
systems, 
which includes 
human-machine 
cognitive testing
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network element for target detection has much different structure and vulnerabili-
ties. An independent system may involve intelligence to coordinate the intelligent 
components, complicating the already challenging systems testing landscape, as 
well as the issues such as human trust. A joint cognitive system is vulnerable to 
subtle mismatches between human and computer capabilities which are difficult 
to anticipate and simulate.

Broader applications of AI, such as artificial general intelligence, lie beyond 
the scope of this study. Furthermore, while some sections of the report focus on 
machine learning or large language models as prominent examples of AI, these 
are just examples—they are not, and should not be considered, the only target of 
this report.

Given the diversity of implementations, meanings, categories, and scope of 
applicability of the term AI, this study has used the general term AI without ap-
plying a series of qualifications each time the term is used. The report uses AI to 
refer variously to AI elements, independent systems, and joint cognitive systems. 
The report does not always call out the specific scope of the AI to which it refers 
in every instance, but the committee trusts that the context will make the mean-
ing clear to the reader.

1.4 CURRENT STATE OF THE ART OF AI

The foundations for AI were laid through a seminal paper by Alan Turing 
and a 1956 summer workshop held at Dartmouth attended by some of the best-
known researchers in the country. In the 1960s and 1970s, AI was focused on 
developing efficient search algorithms such as A* and playing games such as 
checkers, chess, etc. In the mid-1980s, uncertainty models were introduced as 
Bayesian networks and associated inference algorithms based on enumeration 
and variable elimination. In the 1980s, researchers pursued neural networks, 
which, although promising, did not lead to significant progress in AI then. Do-
main knowledge was the key contributor to the development of AI in the 1970s 
and 1980s. Starting in the 1990s, an explosion of automated data collection and 
computational processing power helped to seed a new age of data-driven AI. 
Since 2012, with the reemergence of deep learning algorithms (an expansion of 
the neural net concept), much of what is known as AI is based on learning from 
data using supervised, unsupervised, semi-supervised, or weakly supervised tech-
niques, or reinforcement learning. More recently, generative AI models such as 
generative adversarial networks, diffusion models, and neural radiance fields have 
been used for generating synthetic data that can be used for deep learning. Over 
the decade, the main applications of AI have been in game playing, computer 
vision, natural language processing, advertising and marketing, and robotics. 
Figure 1-1 describes these developments.
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1.5 CURRENT STATE OF THE PRACTICE OF AI IN THE DAF

The DAF is in the early stages of incorporating modern AI technology into its sys-
tems and operations. Through interviews with Air Force T&E leadership (full meeting 
agendas are available in Appendix C), the committee ascertained that, possibly apart 
from classified programs,3 the Air Force has not yet acquired any modern AI capabil-
ity within the standard acquisition processes for a major defense acquisition program 
(MDAP) or major automated information system (MAIS). AI-related projects to date 
have been research and development initiatives or proof-of-concept demonstrations 
or have been integrated into existing systems as upgrades or prototypes.

According to the Government Accountability Office (GAO) February 2022 
report Artificial Intelligence: Status of Developing and Acquiring Capabilities for 
Weapon Systems (Table 1-2), as of April 2021, the Air Force had funded 80 projects 
that incorporated AI technology. Of those, research, development, test, and evalu-
ation (RDT&E) funded 74, and 6 were acquisition procurement.

DAF AI-Based Prototypes and Demonstrations

The DAF has used proof-of-concept demonstrations and prototypes to moti-
vate the value of AI and to increase its understanding of the processes, infrastructure 
needs, and specific challenges accompanying the integration of AI capability into 
its systems.

 �3 The committee is unaware of classified programs that incorporate AI technology, but that does 
not mean that such activities have not taken place.

FIGURE 1-1  The history of AI.
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For example, in 2020, the Air Force conducted a demonstration at Beale 
Air Force Base that integrated machine learning into a test aircraft. In a train-
ing flight, the AI algorithm controlled the sensor and navigation systems on a 
U-2 Dragon Lady spy plane. A test pilot oversaw the AI operation but did not 
intervene, although flight control always remained in the hands of the pilot. 
According to an interview4 with Dr. William Roper, 13th Assistant Secretary of 
the Air Force for Acquisition, Technology, and Logistics, “Roper said the AI was 
trained against an opposing computer to look for oncoming missiles and missile 
launchers. The AI got the final vote for the initial test flight on where to direct 
the plane’s sensors.”

As another example, the Defense Advanced Research Projects Agency’s 
(DARPA’s) Air Combat Evolution (ACE) program has also been advancing the 
use of AI in DAF systems. As described by DARPA:5

The ACE program seeks to increase trust in combat autonomy by using human-machine 
collaborative dogfighting as its challenge problem. This program also serves as an entry 
point into complex human-machine collaboration. ACE will apply existing artificial intelli-
gence technologies to the dogfight problem in experiments of increasing realism. In parallel, 
ACE will implement methods to measure, calibrate, increase, and predict human trust in 
combat autonomy performance. Finally, the program will scale the tactical application of 
autonomous dogfighting to more complex, heterogeneous, multi-aircraft, operational-level 

 �4 A. Gregg, 2020, “In a First, Air Force Uses AI on Military Jet,” The Washington Post, December 16, 
https://www.washingtonpost.com/business/2020/12/16/air-force-artificial-intelligence.

 �5 R. Hefron, “Air Combat Evolution (ACE),” Defense Advanced Research Projects Agency, https://
www.darpa.mil/program/air-combat-evolution.

TABLE 1-2  Current DoD AI Efforts

DoD Component

# of AI Projects

R&D Funding Procurement Funding Total

DAFa   74   6   80

Army 209 23 232

Marine Corps   26   7   33

Navy 176 38 215

Other DoD Entitiesb,c 117   8 126
  a DoD’s methodology combined AI projects from the Air Force and Space Force.
  b Other DoD entities include combatant commands and other unspecified DoD components included in the JAIC’s 
methodology.
  c DoD’s initial inventory does not include classified AI projects of those funded through operations and maintenance.
SOURCES: GAO analysis of Department of Defense (DoD) information: GAO-22-104765, Appendix II.
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simulated scenarios informed by live data, laying the groundwork for future live, campaign-
level Mosaic Warfare experimentation.

An early ACE success was the AlphaDogfight simulation contest. In this contest, 
an AI agent based on deep reinforcement learning beat a seasoned Air Force F-16 
pilot 5-0 in a set of simulated one-on-one dogfights between two F-16 aircraft.6

AI prototype capability has also been integrated into the DAF Common Mission 
Control Center (CMCC).7 The CMCC has incorporated a system called APIGEE 
(Automated Pipeline for Imagery Geospatial Enhancement and Enrichment), which 
does auto-mensuration of intelligence, surveillance, and reconnaissance (ISR) 
imagery to reference imagery to generate target-quality coordinates. APIGEE uses 
AI and deep learning to do image matching. The system currently performs electro-
optical (EO)-to-EO mensuration, and additional multi-model capabilities are being 
tested for IR-to-EO and SAR-to-EO. CMCC has also incorporated a prototype 
Dynamic Electronic Order of Battle (EOB) capability that uses machine learning to 
develop patterns-of-life from electronic intelligence (ELINT) and identifies anoma-
lies based on these normal behavior patterns. The project teams are migrating the 
EOB capability to the enterprise cloud as part of a CMCC “Common EOB” project.

Similarly, work has been ongoing with the Machine Assisted GEOint Exploita-
tion (MAGE) program out of Air Combat Command (ACC) to incorporate AI into 
ISR processing, exploitation, and dissemination (PED) systems for geospatial intel-
ligence (GeoINT) exploitation at defense geospatial service (DGS) sites. MAGE uses 
AI models to automate object detection workflows in various GeoINT products to 
support intelligence production. While actively under development, it still is not a 
fully deployed system and remains in development and evaluation.

The Air Force Collaborative Combat Aircraft (CCA) program pulls developed 
capabilities from other DAF programs such as Skyborg, AlphaDogfight, ACE, 
Variable In-Flight Simulator Aircraft (VISTA), and others. As the 96th Operations 
Group Commander briefed the committee, different aspects of each program, 
along with autonomy, data, and AI experimentation (ADAX),8 will be used to help 
formulate AI T&E policies and processes across the DAF. Early observations include 
the challenges of building new or heavily modifying existing air vehicles—such 
as the XQ-58 Valkyrie and the Viper Experimentation and Next-Gen Operations 

 �6 E. Tegler, 2020, “AI Just Won a Series of Simulated Dogfights Against a Human F-16 Pilot, 5-0. 
What Does That Mean?” Forbes, August 20, https://www.forbes.com/sites/erictegler/2020/08/20/
ai-just-won-a-series-of-simulated-dogfights-against-a-human-f-16-pilot-5-to-nothing-what-does- 
that-mean/?sh=7025a447235d; P. Tucker, 2020, “An AI Just Beat a Human F-16 Pilot in a Dogfight—
Again,” Defense One, August 20, https://www.defenseone.com/technology/2020/08/ai-just- 
beat-human-f-16-pilot-dogfight-again/167872.

 �7 Private correspondence with Paul Metzger, MIT Lincoln Laboratory.
 �8 Autonomy, Data, and AI Experimentation.
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Model (VENOM) project, respectively—while incorporating extensive autonomy 
and, eventually, AI-enabled autonomy. At this stage, few AI-specific standalone 
capabilities are associated with these projects. However, the goal of Project Venom 
is to demonstrate autonomous capabilities on manned (and at some point un-
manned) F-16s. The maturation of the CCA program will require a commensurate 
comprehensive AI T&E strategy and implementation plan.

Based on the committee’s site visit to Eglin Air Force Base (AFB) and what 
various DAF representatives told the committee, it is evident from these proto-
type demonstrations that there is no well-established DoD-wide or DAF-wide set 
of standards for AI-based systems development or T&E. That is not to say that 
rigorous testing does not occur but that each project must develop its own T&E 
approaches and impose its own standards. However, what was also clear is that, 
due to the nature of the AI life cycle, early user involvement and continual T&E 
were essential elements of success.

A Case Study of Transition from Prototype to Initial Operating Capability

As the DAF seeks to transition prototypes to operational use, key aspects of 
AI-based systems acquisition have emerged (see Section 1.6 for a more in-depth 
case study). For example, Massachusetts Institute of Technology Lincoln Labora-
tory (MIT LL) transferred a Global Synthetic Weather Radar (GSWR) prototype 
to a software company called NextGen Federal Systems (NFS) for inclusion as part 
of the DAF weather forecasting system. The GSWR provides radar-like analyses 
and forecasts over regions not observed by actual weather radars by compiling 
lightning data, satellite imagery, and numerical weather models. The T&E process 
implemented to achieve the GSWR initial operating capacity (IOC) is instructive 
and underscores a few key points in acquiring AI-based capability. The process, in 
summary, was:9

•	 MIT LL developed a prototype capability based on prior work for the 
Federal Aviation Administration (FAA) and performed extensive testing 
using its access to global weather data. Several modifications to adapt the 
FAA model were required to tune and retrain GSWR to work in various 
geographic regions around the globe.

•	 Before officially transferring the software, MIT LL hosted a baseline imple-
mentation in the Amazon Web Services (AWS) government cloud. In ad-
dition, the contractor was given access to facilitate technology transition 
through a detailed assessment and refinement phase using an agile develop-
ment process.

 �9 From private correspondence with Dr. Mark Veillette, MIT Lincoln Laboratory.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

27I n t r o d u c t i o n

•	 After this initial phase, NFS accepted the software, re-hosted the baseline as-is, 
and used the MIT LL prototype as a reference system to verify their imple-
mentation. In addition, MIT LL collaborated with NFS on the USAF cloud 
portal to update the software and make it compliant with DoD cyber security 
requirements. Much of this work entailed fixing code quality issues identified 
by scanners (e.g., SonarQube) and developing unit and integration tests to 
support future development operations (DevOps). During this time, NFS also 
integrated the baseline into Kubernetes10 for improved cloud deployment.

The DAF is developing an in-house platform for tracking curated datasets, 
machine learning (ML) model training, and experimentation. Because GSWR has 
significant ML components, the datasets and training processes were also integrated 
into this platform for NFS to replicate MIT LL results.

This case study underscores a few key points that manifest in virtually all AI-
based projects:

•	 Subject-matter experts (SMEs) in machine learning and weather forecasting 
were needed throughout all phases, from initial concept to IOC, and have 
remained involved beyond the IOC phase to facilitate a rapid and flexible 
DevOps process that integrates security requirements (DevSecOps).

•	 Extensive data was needed in the early research and development and 
deployment phases, and retraining for new geographic regions with new 
datasets was required. Curation, protection, and integration of data into 
the overall DevSecOps process were recognized as a necessary part of the 
engineering process. Retraining using operational data and the infrastruc-
ture to support this retraining were also key elements of success.

DAF AI Research and Development

The DAF, principally through the Air Force Research Laboratory (AFRL), is 
conducting or funding several research and development projects to advance AI 
implementations for the DAF. The projects span the following AI-related areas:11

•	 Basic AI research in the mathematics, information sciences, and life sciences
•	 AI applied to materials for structures, propulsion, and subsystems

 �10 Kubernetes is an open-source container orchestration platform that automates many of the 
manual processes involved in deploying, managing, and scaling containerized applications.

 �11 Department of Defense, 2022, Fiscal Year (FY) 2023 Budget Estimates, Office of the Secretary of 
Defense, Vol. 3 of 5 in Defense-Wide Justification Book, Washington, DC, https://comptroller.defense. 
gov/Portals/45/Documents/defbudget/fy2023/budget_justification/pdfs/03_RDT_and_E/OSD_
PB2023.pdf. Some smaller RDT&E projects have been excluded.
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•	 AI, automation, and autonomy for sensory evaluation and decision science
•	 AI for EO sensors and countermeasures technology
•	 AI applied to sensor fusion
•	 AI applied to C4I12 dominance, battlespace development, and demonstration
•	 AI-enhanced life-cycle management
•	 Skyborg integrated technology demonstration

One technology demonstration of note is the AFRL-Air Force Life Cycle Man-
agement Center (AFLCMC) Skyborg project, one of the DAF’s four Vanguard 
programs and a component of the DAF’s overarching CCA project. Skyborg is an 
autonomous aircraft teaming architecture designed to increase the number of mis-
sion sorties while lowering costs. The program is investigating how AI-operated 
drones can team with human-piloted aircraft. Skyborg has established an open 
approach to autonomy architecture, building a scalable system designed to be por-
table across aircraft platforms and modular in its design to accommodate multiple 
software applications. Skyborg is intended to become a program of record in 2023 
or 2024, depending on budget constraints. In 2022, the program executive officer 
(PEO) for AFLCMC’s fighters and advanced aircraft directorate called Skyborg 
“wildly successful in terms of what we got out of it, what we continue to get out 
of it, and how we use that to present decision space to our leaders on how we set 
up programs of record.”13

The AFRL-funded DAF-MIT AI Accelerator (AIA 1.0) is an example of a 
research and development project that has elements of core AI, enabling AI, and 
AI-enabled capability. The project’s website (https://aia.mit.edu/about) provides 
project details and a succinct introduction to AIA 1.0. The latter is excerpted below:

In February 2019, the President of the United States signed Executive Order 
13859 announcing the American AI Initiative—the nation’s strategy on AI. He 
wrote, “Continued American leadership in Artificial Intelligence is paramount to 
maintaining the economic and national security of the United States.”

The DAF subsequently signed a cooperative agreement with the Massachusetts 
Institute of Technology (MIT) to create a joint artificial intelligence Accelerator 
hosted at MIT. The effort, known as the DAF-MIT AI Accelerator (AIA), leverages 
the combined expertise and resources of MIT and the DAF. The AIA conducts fun-
damental research to enable rapid prototyping, scaling, and the ethical application 
of AI algorithms and systems to advance the DAF and society. A multidisciplinary 
team of embedded officers and enlisted airmen join MIT faculty, researchers, and 

 �12 Command, control, communications, computers, and intelligence.
 �13 G. Hadley, 2022, “ ‘Wildly Successful’ Skyborg Will Become Program of Record But Won’t Stop 

Developing S&T,” Air and Space Forces Magazine, August 16, https://www.airandspaceforces.com/
wildly-successful-skyborg-program-of-record-developing-st.
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students to tackle some of the most difficult challenges facing our nation and the 
air force, ranging from technical to humanitarian.

In January 2020, the AI accelerator launched ten interdisciplinary projects 
involving researchers from the MIT campus, MIT LL, and the DAF, as seen in 
Table 1-3. The 3-year projects, which encompass 15 research workstreams, ad-
vance AI research in various areas, including weather modeling and visualization, 
optimization of training schedules, and autonomy for augmenting and amplifying 
human decision-making.

While a major goal of the AIA is to develop core AI relevant to societal benefit 
and air force needs, the program is also developing tools, techniques, processes, 
and infrastructure that pioneer new DAF approaches to AI technology acquisition. 
Examples include the following:

•	 Computational support for AI. The “Fast AI” and “ML-Enhanced Data Col-
lection, Integration, and Outlier Detection” projects focus on providing 

TABLE 1-3  DAF-MIT AI Accelerator Projects
  # AIA Project Name Project Type

  1 Guardian Autonomy for Safe Decision Making AI Core

  2 Fast AI AI Enabling

  3 ML-Enhanced Data Collection, Integration, and Outlier Detection AI Enabling/AI Core

  4 Transferring Multi-Robot Learning Through Virtual and Augmented  
Reality for Rapid Disaster Response

AI Core

  5 Conversational Interaction for Unstructured Information Access AI Core

  6 AI for Personalized Foreign Language Education AI Core

  7 Multimodal Vision for Synthetic Aperture Radar AI Core

  8 AI-Assisted Optimization of Training Schedules AI Core

  9 The Earth Intelligence Engine AI Core

10 Continual and Few-Shot Learning: Transferring Knowledge to New Low 
Resource Domains and Tasks

AI Core/AI enabling

11 Explainable Machine Learning for Decision Support AI Core/AI Enabling

12 AI Education Research: Know-Apply-Lead AI Enabling

13 RAIDEN (Robust AI Development Environment) AI Core/AI Enabling

14 Objective Performance Prediction and Optimization Using Physiological  
and Cognitive Metrics

AI Core

15 Robust Neural Differential Models for Navigation and Beyond AI Core

16 AI-Enhanced Spectral Awareness and Interference Rejection AI Core

17 Application of Coevolutionary Algorithms for DoD Complex Enterprises AI Core

18 Space Domain Awareness AI Core

19 Better Networks via AI-Enabled Hierarchical Connection Science AI Core
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efficient computational and data management capabilities to enable scal-
able AI development. The latter project also uses machine learning in its 
support algorithms (“AI for AI”).

•	 AI tools. The “RAIDEN,” “Continual and Few-Shot Learning,” and “Explain-
able Machine Learning for Decision Support” projects focus on founda-
tional AI advances to support T&E and responsible AI development.

•	 Small, agile teams. All projects by design include MIT researchers, MIT LL 
application and AI specialists, and DAF airmen and guardians working together 
as a team from project conception to transition. Transition partners are identi-
fied at the outset of projects and interact throughout the project life cycle. This 
diverse team composition encourages technology transition to the fir Force and 
air force user feedback to the researchers.

•	 Challenge problems. The open release of labeled datasets such as ImageNet 
has spurred the advancement of commercial and academic machine learn-
ing technology worldwide. Each AIA project defines a set of challenge 
problems and releases curated and labeled datasets to engage the broader 
AI research community. The datasets are unclassified but representative of 
key AI technology challenges in each project’s research domain. Also, to 
facilitate challenge participation, the AIA developed a DoD-tailored data-
sharing approach based on a University of California agreement that has 
been used for decades.14

•	 Educational outreach. Recognizing the importance of educating the DAF 
workforce, the “AI Education Research: Know-Apply-Lead” project was estab-
lished to explore how to shape curricula and create course-ware to customize 
AI education for various learners with different needs and responsibilities.

Many AIA projects will seek to transition their technologies to air force stake-
holders in the next few years. These transitions should provide opportunities to 
explore the efficacy of small-team AI development processes, including DevSecOps 
processes and continual T&E.

Summary

The DAF is only beginning to pursue AI technology for its systems and opera-
tions. To the committee’s knowledge, no major DAF acquisition program (MDAP 
or MAIS) has incorporated modern AI technology beyond prototype capabilities 
and advanced concept demonstrations. In the absence of DAF and DOD AI-specific 

 �14 See University of California, 2022, “University of California Research Data Policy,” VP-Research 
and Innovation, https://policy.ucop.edu/doc/2500700/ResearchData; Department of the Air Force-
Massachusetts Institute of Technology Artificial Intelligence Accelerator, 2023, “Challenges Supple-
mental Resources,” http://aia.mit.edu/challenges-supplemental.
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standards, the acquisition and T&E processes adopted by these prototyping projects 
have been ad hoc, although they emulate sound commercial practices. Several AI 
projects are in the RDT&E pipeline, which motivates the need to address AI T&E 
for DAF as these technologies mature and become incorporated into DAF systems. 
Similarly, the 2022 establishment of the Autonomy, Data, and AI Experimentation 
proving ground at Eglin AFB as a joint venture between DAF CDAO and AFWERX 
is an encouraging initial step. Additionally, information is not always shared be-
tween the different pockets of AI work throughout the DAF.

This report aims to provide timely recommendations to help the Air Force 
establish effective T&E infrastructure and processes in anticipation of increased 
use of AI, especially applying AI technology to safety critical systems.

1.6 ALGORITHMIC WARFARE CROSS-FUNCTIONAL 
TEAM (PROJECT MAVEN) CASE STUDY

In April 2017 then-Deputy Secretary of Defense Robert Work established the 
Algorithmic Warfare Cross-Functional Team (AWCFT), or Project Maven, which 
reported to the deputy secretary through the under secretary of defense for intel-
ligence (USDI). The AWCFT was the Department of Defense’s first program to 
operationalize AI/ML at speed and scale. The AWCFT’s primary objective was to 
accelerate the Department of Defense’s integration of big data and machine learn-
ing and to “turn the enormous volume of data available to DoD into actionable 
intelligence and insights at speed.”15

The AWCFT’s first specified task was to field AI capabilities to augment, accel-
erate, and automate the processing, exploitation, and dissemination (PED) of full-
motion video (FMV) from tactical and medium-altitude unmanned aerial systems 
(UAS). During the first year, Project Maven adopted and tailored commercially-
developed computer vision (CV) algorithms for object detection, classification, and 
tracking. Its work subsequently expanded to include natural language processing 
(NLP) for exploitation of hard copy and digital materials collected during combat 
operations in the Middle East and East Africa, as well as machine translation, facial 
recognition, and SAR. Maven was also tasked to consolidate existing AI algorithm-
based technology projects across the defense intelligence enterprise (DIE), in-
cluding initiatives that developed, employed, or fielded AI, automation, machine 
learning (ML), deep learning (DL), and computer vision algorithms.

The initial cadre of Project Maven personnel lacked AI T&E experience, forc-
ing them to rely extensively on T&E support from outside organizations. The pri-
mary participants were the Johns Hopkins University Applied Physics Laboratory 

 �15 Department of Defense, 2017, “Establishment of an Algorithmic Warfare Cross-Functional Team 
(Project Maven),” Deputy Secretary of Defense, https://www.govexec.com/media/gbc/docs/pdfs_edit/
establishment_of_the_awcft_project_maven.pdf.
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(JHU APL), the Army and Air Force Research Laboratories, and several commercial 
companies with AI model fielding experience.

In the first few months of operations, the Project Maven team learned what 
has been noted elsewhere in this study, to wit, the substantial differences between 
AI T&E and T&E for traditional hardware systems. There was no DoD-wide AI 
T&E “playbook” for Maven to rely on. And because no other extant DoD-wide AI 
projects were dedicated to fielding AI-enabled solutions at scale, the OSD director 
of operational test and evaluation had not yet developed a standardized DoD AI 
T&E template or established AI T&E best practices.16 Instead, individual users and 
organizations, primarily within the service research laboratories, had continued 
to develop boutique T&E processes, procedures, practices, and technical solutions 
tailored to their unique AI projects, the vast majority of which were research and 
development initiatives at relatively low technology readiness levels (TRLs).

The Maven team developed model performance benchmarks and other T&E 
criteria for each algorithm purchased from a commercial vendor (and subsequently 
trained against DoD data to become a DoD-licensed AI model). For computer vi-
sion algorithms, these included precision, recall, f-scores, intersection over union—
more of a parameter than a metric in and of itself—and mean average precision. 
While each commercial vendor provided its own internal testing results, Maven 
insisted on reinforcing commercial testing results with additional, DoD-led tests 
and evaluation of each algorithm and trained model, using withheld test data to 
which the vendors were not exposed.

Since there were few examples of AI T&E within DoD apart from small-scale 
research laboratory projects, Maven adopted and adapted AI T&E best practices 
from the private sector and academia. These practices include setting aside suf-
ficient representative, quality data for training, test, and validation or assessment; 
building T&E harnesses;17 evaluating fielded models as part of ongoing operational 
assessments; evaluating model boundary conditions and AI failure modes; and 
developing T&E processes for each subsequent update to fielded models through 
normal CI/CD processes. The extent of T&E required for each subsequent model 
version depended on the breadth and depth of the changes included in each update. 
In most cases, later versions required a shorter T&E process than required during 
the first several updates to fielded models. In all cases, the Maven T&E team gained 
enough experience to accelerate T&E timelines. Maven also coordinated with 
commercial AI companies to establish contractual requirements for AI algorithm 

 �16 As of December 2022, OSD DOT&E had not developed AI T&E templates or promulgated AI 
T&E best practices.

 �17 A T&E harness is “a software that tests model accuracy and other metrics.” See JAIC, 2020, “JAIC 
Spotlight: The JAIC’s Test Evaluation and Assessment Team Shapes Future AI Initiatives,” CDAO blog, 
May 27, https://www.ai.mil/blog_05_27_20-jaic_spotlight_test_evaluation_and_assessment_team.
html.
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performance and detail intellectual property (IP) protections (although neither 
of these was entirely resolved under Maven; given the unique circumstances of 
each AI project, performance requirements and IP protections must be addressed 
separately for every AI development project—as discussed in more detail in the 
requirements section that follows).

In addition to developing an AI T&E “playbook,” the Maven team worked 
closely with operational end-users, none of whom had any previous experience 
using AI-enabled systems and were unfamiliar with establishing requirements for 
or interpreting the metrics associated with AI T&E. Maven personnel “translated” 
T&E metrics into terms most relevant to operational end-users. Because formal 
requirements had not been established for AI model performance, once the Maven 
team had completed data quality assurance, T&E on each model, integration testing 
in the Maven Integration Lab, and live-fly testing; user acceptance of each trained 
model, and follow-on updates to those fielded models, was based primarily on an 
agreement between the Maven team and operational users that models had dem-
onstrated adequate performance under operational conditions. As acknowledged 
elsewhere in this study, this process underscored the importance of defining future 
T&E requirements for all AI capabilities and AI-enabled platforms, sensors, and 
tools in ways that reflect consensus between developers and end-users at every 
stage of the AI life cycle.

After the first year of operations, Dr. Yevgeniya (Jane) Pinelis, who worked for 
the Institute for Defense Analyses (IDA) as a technical advisor to OSD DOT&E, 
moved to JHU APL to serve as their on-site representative to the AWCFT. As the 
Project Maven T&E team lead, Dr. Pinelis led the developmental and operational 
testing of AI algorithms, including computer vision, machine translation, facial rec-
ognition, natural language processing, and human-machine teaming. In addition, 
Dr. Pinelis relied on existing policies and standards from outside the department, 
particularly those established by the International Organization for Standardiza-
tion (ISO), the Institute of Electrical and Electronics Engineers (IEEE), and the 
National Institute of Standards and Technology (NIST), to develop DoD-specific 
AI T&E policies, processes, procedures, and best practices in this role.18

Based on T&E lessons learned from Project Maven, the inaugural Director of 
the DoD Joint AI Center (JAIC), Lieutenant General Jack Shanahan,19 established a 
test and evaluation directorate within the JAIC as part of the initial organizational 
structure. Dr. Pinelis served as the JAIC’s inaugural chief of test and evaluation, 
and subsequently served as the chief of AI assurance in the OSD CDAO until her 
departure in early 2023. Dr. Pinelis extended her previous Maven T&E work to 

 �18 Once the deputy secretary of defense issued the “DoD AI Ethical Principles” in February 2020, the 
Maven AI T&E cadre was tasked with testing AI algorithms and models for operational effectiveness, 
robustness, resiliency, and alignment with those principles.

 �19 Lieutenant General Shanahan (USAF, Ret.) served as a committee member for this study.
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develop an AI T&E template for the JAIC, which became the accepted standard 
for defining T&E requirements, evaluating algorithm performance during model 
training and testing, and performing T&E on updates to fielded models.

In her role at the JAIC, Dr. Pinelis formed an AI T&E Community of Interest 
(CoI) across DoD and with academia and other government agencies, including 
the National AI Initiative Office (NAIIO), NIST, the Office of the Director of Na-
tional Intelligence (ODNI), OSD DOT&E, the Test Resource Management Center 
(TRMC), the OSD Under Secretary for Research and Engineering (OUSD[R&E]), 
the military services, DARPA, Federally Funded Research and Development Cen-
ters (FRDC) and University-Affiliated Research Centers (UARC), and represen-
tatives from academia and industry. The CDAO has since published AI T&E 
playbooks and best practice guides, which are available to all government agencies 
and organizations, and launched a first-of-its-kind AI T&E bulk purchasing agree-
ment that allows government components to access leading AI T&E commercial 
vendors.

A Project Maven vignette from 2019 to 2020 underscored the importance of 
rigorous and disciplined AI T&E and the need for government agencies to rely on 
in-house or disinterested third-party T&E to validate test results provided by com-
mercial vendors. When evaluating the performance of a later version of a fielded 
AI computer vision model, T&E results indicated a decrease in performance com-
pared to the previous model version. This was an unexpected result since all other 
earlier updates to the model demonstrated steadily-improving performance across 
all T&E metrics. Unfortunately, the results did not improve, despite repeated test-
ing with additional test data. As a result, the team faced a decision of whether to 
field an update that was needed immediately by the operational end-users, under 
the assumption that there were unknown flaws in the T&E process rather than the 
model itself or delaying fielding until the unexpected results could be explained. 
They elected to delay fielding the updated version of the model.

After a detailed analysis of contributing factors, the team discovered that the 
commercial vendor responsible for the CV algorithm had lost several key data 
scientists over several months. Their replacements were not as familiar with the 
fielded model and provided an updated version of the algorithm that had been in-
sufficiently tested. The performance of the updated model was not operationally ac-
ceptable—exactly as Maven’s T&E results had indicated. The algorithm and model 
were improved, retrained, retested, and fielded. The Maven case study highlights 
how many AI T&E issues are technically feasible but organizationally challenging.
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2
Definitions and Perspectives

An artificial intelligence (AI) system’s capability relies on the data corpus used 
to create the AI. This depzndency on data presents interesting challenges to tradi-
tional test and evaluation (T&E) architectures. The following chapter’s goal is to 
provide the reader with the fundamental definitions of these systems (Section 2.1), 
the role data plays in the AI life cycle (Section 2.2), and how T&E approaches have 
evolved in AI-enabled systems (Section 2.3). Additionally, the committee discusses 
the role of human-machine teaming in AI implementations and its impact on 
system T&E (Section 2.4). All of these distinctions warrant consideration when 
architecting AI-enabled systems for production deployment.

2.1 AI-ENABLED SYSTEMS

An AI-enabled system is a computer system that uses AI techniques to perform 
tasks that typically require advanced deductive or inductive tasks based on collected 
data of all types. These tasks include but are not limited to image and video analysis, 
predictive analytics, autonomous control and decision-making, and language and 
speech processing. AI-enabled systems have the potential to augment and enhance 
human capabilities.

There is a wide range of military applications for AI-enabled systems. A few 
key examples are as follows:

•	 Intelligence, surveillance, and reconnaissance: AI can be used to analyze 
large amounts of data from sensors and other sources to identify patterns 
and trends and detect potential threats.
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•	 Target identification and tracking: AI can identify and track targets, such 
as vehicles or individuals, using sensor data and other sources.

•	 Cybersecurity: AI can detect and prevent or limit cyberattacks by analyzing 
network traffic and identifying anomalies that may indicate an attempt to 
breach security.

•	 Enhancing situational awareness: AI-enabled systems can analyze data 
from various sources, such as sensors and radar, to provide military pilots 
with real-time situational awareness and help them make better-informed 
decisions.

•	 Autonomous weapons systems: Autonomous weapons systems may use AI 
to make decisions and take actions without human intervention.1

•	 Training and simulation: AI can create realistic training environments and 
simulations for military personnel, allowing them to practice and improve 
their skills in a controlled setting.

•	 Navigation and flight planning: AI-enabled systems can be used for route 
planning, airspace management, and obstacle avoidance tasks.

All AI-enabled systems are produced by the same cyclical generation process, 
known as the AI life cycle. The three basic components of the life cycle are training, 
inference, and re-training. Each of those three components can be further broken 
down into constituent steps that capture the nuance in each phase, as depicted in 
Figure 2-1 (although, in practice, this process is not always as linear as the figure 
may suggest). When combined, problem framing, data processing, and model 
development represent the training phase of the life cycle and yield an AI model 
trained to perform a given task. The deployment phase represents the operation-
alization of the trained model into a system where it will be asked to perform its 
task on new, incoming data. This phase is also referred to as the inference phase. 
The monitoring phase informs model development and initializes any re-training 
that is required. Re-training is necessary if the model’s performance deviates from 
what is expected once it is deployed and interacts with real-world data. The mea-
surement and detection of that deviation, and the infrastructure and processes to 
manage it during training, inference, and re-training, are the subject of this report.

The training process for an AI-enabled system typically involves feeding the 
system large amounts of data and allowing it to learn from the patterns and rela-
tionships it discovers.

 �1 Department of Defense, 2023, “DoD Directive 3000.09: Autonomy in Weapon Systems,” Office 
of the Under Secretary of Defense for Policy, https://www.esd.whs.mil/portals/54/documents/dd/
issuances/dodd/300009p.pdf. In DoD, autonomous weapon systems are governed by DoD Directive 
3000.09, “Autonomy in Weapon Systems.” This directive also governs the use of AI-enabled autono-
mous and semi-autonomous weapon systems.
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FIGURE 2-1  An example of a well-architected machine learning life cycle. SOURCE: Courtesy of 
Amazon Web Services.

2.2 ROLE OF DATA IN AI-ENABLED SYSTEMS

The amount of data that an AI requires can be enormous. For example, ca-
nonical computer vision models are trained on millions of images. Current state-
of-the-art large language models have been trained on the content from millions 
of website pages. Training fleets for autonomous vehicle programs can produce 
petabytes a week that need to be processed. Data touch AI at every point in the AI 
life cycle, albeit in different ways, and is thus the most valuable part of the system. 
How data are collected, managed, curated (including labeling and assessing label 
quality), and maintained is crucial to the sustainability of AI systems.

Various statistical methods can be used to evaluate a model’s performance over 
the training period during the training of any of these systems. These statistics 
can be directly related to the objective function of the learning process and help 
to determine if the model has converged on a reasonable solution. Or they can 
be independent measurements that describe some other characteristic of what the 
model has learned so far. These measurements indicate a model’s performance 
relative to the data within its training corpus. For these measurements to have any 
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validity for operations, the training corpus must be representative of the defined 
operational deployment conditions. Therefore, it is a goal that the data be both 
sound and complete. In this context, a sound data sample is a valid sample from 
the input space—meaning it is a legitimate example of input data. The complete-
ness of the data refers to how well the samples cover the input space—meaning all 
potential inputs have been sampled. Completeness is the distinctly more difficult 
characteristic to manage, yet it is incredibly important when fielding AI-enabled 
systems. If the completeness of a training corpus is poor, then a model will be 
unlikely to perform in an expected way in the field. Implicit in these requirements 
is that the label quality is highly emphasized.

In an AI-enabled system, operational data refers to the data collected and used 
by the system to perform its tasks. For example, in an autonomous vehicle system, 
operational data comes from various sources, such as sensors, cameras, and radar, 
and data from onboard systems, such as speed, location, and orientation. The AI 
system uses the operational data to draw conclusions about how to operate. For 
example, the AI system in a car may use data from the car’s sensors to detect ob-
stacles or traffic signals and make decisions about how to safely navigate around 
them. The system may also use data from the car’s onboard systems to determine 
its location and track its progress toward its destination.

Unfortunately, real-world data are often complex, diverse, and constantly chang-
ing, making it impossible to capture and represent all possible scenarios in a single 
dataset. Furthermore, collecting data on all possible scenarios is often impractical or 
infeasible, as it may require extensive resources and time. Gathering data on rare or 
unusual events is extremely challenging, and the committee cannot gather data (except 
via simulations) on scenarios that have not yet occurred. As a result, it is generally 
necessary to make trade-offs when collecting and preparing data for AI training.

One common mitigation is to augment the data with synthetic or simulated 
data or use domain knowledge or expert insights to fill in gaps in the data. This 
approach may involve running full-scale simulations or modifying existing training 
data (e.g., different orientations). Usually, this augmentation is done in an itera-
tive fashion wherein gaps in the learning are identified, and new data are added 
to fill in the gaps. It should be noted that identifying the gaps can be incredibly 
challenging in and of itself. Another common mitigation for many AI systems is 
learning continuously in real time, updating their underlying AI models based on 
new information. However, this is particularly vexing for testing since the system 
being tested is constantly changing.

These mitigations typically try to account for the lack of known or perceived 
completeness in the training corpus. However, even with all these adaptations, de-
ployed models can still perform in unexpected ways when operational conditions 
change. The operational change can either be due to a domain shift or the advent 
of an unexpected scenario. This performance change is typically dealt with by re-
training the model with the new observed data. The ability to re-train a deployed 
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model implies instrumentation in place at the deployment location to collect 
organized samples of the new scenario and either re-train in place or transmit the 
new data back to a training environment. Either way, the result of the retraining 
process is a newer version of the model that must be evaluated and redeployed. 
This process should continue for the lifetime of the model. Box 2-1 discusses some 
major types of training techniques.

2.3 HISTORY OF T&E IN AI-ENABLED SYSTEMS

Major applications of AI include computer vision, natural language processing, 
robotics, etc. Of these, computer vision applications have dominated largely due to 
decades of investment by DARPA and other agencies. Computer vision methods 
have found applications in many DoD and Intelligence Community applications 

BOX 2-1 
Major Types of Training Techniques

The specific techniques and algorithms used to train the system can have a significant 
impact on its performance and capabilities. The general classes of learning techniques are 
supervised, unsupervised, self-supervised, and reinforcement.

Supervised learning is the most common type of algorithm training technique. It leverages 
labeled data, or ground truth, to learn what outputs align with which input values. The goal of 
this learning approach is to learn a function that approximates the relationship between the 
labeled inputs and outputs. One of the most popular supervised learning applications is in 
computer vision systems performing image classification or object detection.

Unsupervised learning learns without labels and instead consumes a corpus of data to learn 
the data structure. Typical examples of unsupervised learning include types of clustering or auto-
encoders. These approaches can be useful for data exploration and dimensionality reduction.

Recent advancements in language models have been made using self-supervised 
techniques. Self-supervised learning attempts to correctly predict part of the input data by hid-
ing components of the data and trying to guess the missing pieces from context. For example, 
a corpus of sentences or paragraphs may be used to train a large language model. Within that 
corpus, sentences are modified by hiding words during the training process. The algorithm’s 
goal is to be able to predict the missing word. The prediction capability of the model improves 
by the model being exposed to more examples of similar sentence structure and word usage.

Reinforcement learning (RL) is a technique for training AI models at more complex, action-
based tasks using learning agents within virtual environments. The virtual environments can be 
entirely virtual (i.e., a video game) or representative of the real world (i.e., real-world physical 
simulation). The RL agents are tasked with learning the ideal set of actions within their envi-
ronment to be successful at some defined objective. It is similar to supervised learning in that 
the RL agents are trained using feedback based on the desired relationship between inputs to 
outputs. However, the feedback isn’t simply the correct course of action when an agent guesses 
wrong. Instead, the agents decide on a set of actions within the virtual environment during the 
training process. The agents are given either rewards or punishments to encourage or correct 
the behavior given the defined objective. Over time the RL agents learn the optimal actions to 
achieve the objective.
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such as, automatic target recognition (ATR), image exploitation, 3D modeling and 
rendering, face recognition and identification, action detection and recognition, 
geolocation, navigation, etc., with the most recent example being Project Maven, 
described in Section 2.7. A recent survey2 of DARPA’s investment in computer vi-
sion and robotics summarizes the various DARPA programs since 1976 to date. 
The seminal paper on AlexNet, published in 2012,3 is considered a major catalyst 
for the re-emergence of deep learning methodologies with a tremendous impact 
on computer vision.

The field of AI has gone through many phases. In early years, game playing, 
search algorithms, rule-based systems and constraint satisfaction problems drew 
the attention of researchers. As an example, the famous Waltz algorithm developed 
in the 1970s exemplifies a constraint satisfaction problem. In the 1980s, Bayesian 
graphical models were developed for addressing a wide variety of decision and 
inference problems. In 1982, the introduction of Hopfield networks created new 
enthusiasm for neural networks.4 Traditional computer vision researchers were 
somewhat unappreciative of the three-layered neural networks that behaved like 
“black boxes.” Since 2012, given the performance of AlexNet on the ImageNet 
challenge, the tide has turned. Deep convolutional neural networks developed by 
LeCun and subsequently adopted in Alexnet for addressing the ImageNet chal-
lenge have become dominant in computer vision. However, some of the doubts 
expressed by CV researchers in the 1980s and 1990s have not gone away! AI models 
based on deep learning are not eminently interpretable (the black-box structure 
still lives on). They are as fragile as traditional CV methods, if not more so, when 
data are intentionally corrupted by adversarial attacks. The question of bias and 
fairness has emerged as a serious concern, especially in applications such as face 
recognition. Many concepts in AI have not transferred to data-driven AI. Only 
recently, efforts to integrate symbolic processing into neural computations, lead-
ing to neuro-symbolic processing,5 have emerged. The big issue is the inability of 
data-driven AI to incorporate rich domain knowledge. This is critical in domains 
such as medicine and, surely, in some DoD applications.

 �2 T.M. Strat, R. Chellappa, and V.M. Patel, 2020, “Vision and Robotics,” AI Magazine 41:49–65, 
https://doi.org/10.1609/aimag.v41i2.5299.

 �3 A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet Classification with Deep Convolutional 
Neural Networks,” paper presented at Advances in Neural Information Processing Systems 25 (NIPS 
2012), Lake Tahoe, NV.

 �4 J.J. Hopfield, 1982, “Neural Networks and Physical Systems with Emergent Collective Compu-
tational Abilities,” Proceedings of the National Academy of Sciences 79(8):2554–2558, https://doi.
org/10.1073/pnas.79.8.2554.

 �5 G. Sir, 2022, “What Is Neuro-Symbolic Integration,” Towards Data Science, February 14, https://
towardsdatascience.com/what-is-neural-symbolic-integration-d5c6267dfdb0.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

41D e f i n i t i o n s  a n d  P e r s p e c t i v e s

While CV has existed for many decades, T&E started in earnest in the early 
1980s. There are many reasons for the lag between algorithm development and T&E 
in computer vision: Insufficient data, lack of agreement on appropriate metrics, 
and the notion of end-to-end CV systems was in its infancy. One of the standard 
image databases available then was from the University of Southern California 
(USC), which had images of textures, aerial images of buildings, and some other 
images that were more appropriate for evaluating image compression algorithms. 
In the 1980s, the DARPA Image Understanding Program, in collaboration with the 
defense mapping agency, ventured to develop performance metrics for aerial im-
age analysis. With the emergence of more applied programs, such as Research and 
Development for Image Understanding Systems (RADIUS), Uncrewed Ground Ve-
hicle (UGV), Moving and Stationary Target Acquisition and Recognition (MSTAR), 
Dynamic Database (DDB), etc., from DARPA and the Face Recognition Technol-
ogy (FERET) program from the Army, more data became available and standard-
ized metrics and T&E protocols were put in place. Some examples of large-scale 
evaluations are the evaluation of stereo algorithms,6 face recognition algorithms,7 
and SAR target recognition algorithms.8 The face recognition evaluations started 
in the early 1990s and morphed into a long-standing series of Face Recognition 
Vendor Tests9 conducted by NIST. FRVT evaluations are ongoing, involving over 
300 companies and other entities, and have kept pace with changing technologies.

In computer vision, T&E efforts are often packaged as challenges that go on for 
some years with active participation from companies and academic groups. Some 
examples are given below:

PASCAL VOC Challenge

The PASCAL Visual Object Classes (VOC) challenge10 is a visual object cat-
egory recognition and detection benchmark. The PASCAL VOC challenge includes 
three principal challenge tasks on classification, detection, and segmentation and 

 �6 J. Kogler, H. Hemetsberger, B. Alefs, et al., “Embedded Stereo Vision System for Intelligent 
Autonomous Vehicles,” Pp. 64–69 in 2006 IEEE Intelligent Vehicles Symposium, Meguro-ku, Japan, 
https://doi.org/10.1109/IVS.2006.1689606.

 �7 DARPA, “AI Next Campaign (Archived),” https://www.darpa.mil/work-with-us/ai-next-campaign, 
accessed April 27, 2023.

 �8 SAR, 2020, “DARPA Looking for SAR Algorithms,” SAR Journal, August 3, http://syntheticapertureradar.
com/darpa-looking-for-sar-algorithms.

 �9 National Institute of Standards and Technology, 2020, “Face Recognition Vendor Test (FRVT),” 
https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt.

 �10 M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman, 2010, “The PASCAL 
Visual Object Classes (VOC) Challenge,” International Journal of Computer Vision (IJCV) 88:303–338, 
https://doi.org/10.1007/s11263-009-0275-4.
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two subsidiary tasks on action classification and person layout. The challenge 
consisted of two components: (1) a publicly available dataset of annotated images 
with standardized evaluation tools and (2) an annual competition and correspond-
ing workshop. The PASCAL VOC challenge was held annually from 2005 to 2012 
and developed over the years. In 2005 when the PASCAL VOC challenge was first 
held, the dataset had only 4 classes and 1,578 images with 2,209 annotated objects. 
The number of images and annotations continued to grow, and in 2012 when the 
PASCAL VOC challenge was last held, the training and validation data had 11,530 
images containing 27,450 ROI annotated objects and 6,929 segmentations. The 
PASCAL VOC challenge also witnessed a steady increase in performance over the 
years it was in operation. The PASCAL VOC challenge also contributed to estab-
lishing the importance of benchmarks in computer vision and provided valuable 
insights about organizing future challenges, which has led to a new generation of 
challenges, such as ImageNet.

ImageNet Challenge

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)11 is argu-
ably the most influential challenge in the computer vision community. It was run 
annually from 2010 to 2017 and has become the standard benchmark for large-
scale object recognition. ILSVRC consists of a publicly available dataset, an annual 
competition, and a corresponding workshop. ILSVRC also followed the practice of 
PASCAL VOC, where the annotations of the test set were withheld from the public, 
and the results were submitted to the evaluation server. The backbone of ILSVRC 
is the ImageNet dataset. ILSVRC uses a subset of ImageNet images for training 
the algorithms and some of ImageNet’s image collection protocols for annotating 
additional images for testing the algorithms. ILSVRC scaled up to 1,461,406 im-
ages and 1,000 object classes in ILSVRC 2010. The ILSVRC challenge witnessed 
the success of deep learning and convolutional neural networks (CNNs). The 
breakthrough came in 2012 when a deep CNN called AlexNet achieved a top-5 
error of 15.3 percent, more than 10.8 percentage points lower than the runner-up. 
Since then, the best-performing algorithms in ILSVRC have been dominated by 
deep CNNs. For example, in 2015, ResNet12 achieved a 4.94 percent top-5 error 
rate on the ImageNet 2012 classification dataset, the first algorithm that surpasses 
human-level performance (5.1 percent) on the dataset.

 �11 O. Russakovsky, J. Deng, Hao Su, et al., 2015, “ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC),” International Journal of Computer Vision (IJCV) 115(3):211–252, https://www.image-net.
org/challenges/LSVRC/index.php.

 �12 C. Shorten, 2019, “Introduction to ResNets,” Towards Data Science, January 24, https://
towardsdatascience.com/introduction-to-resnets-c0a830a288a4.
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AICity Challenge

NVIDIA Corporation, in collaboration with research groups across academia, 
launched an annual challenge known as AICity in 2017 to invite teams globally to 
compete for the development of high-performing systems for a few transportation-
related tasks, including monocular speed estimation, city-scale multi-camera re-
identification and tracking, anomaly detection, and natural language-based vehicle 
retrieval. These tasks address important and long-lasting problems in transporta-
tion which currently require many transportation analysts and significant amounts 
of time to solve. However, automating these tasks can provide actionable insights 
promptly. Traffic data for these tasks have been mainly collected from traffic cam-
eras in the state of Iowa, curated and open-sourced accordingly. Since 2017, these 
datasets have motivated thousands of researchers to participate in the challenge, 
significantly contributed to the landscape of AI-powered transportation algorithms 
and extended the boundary to which computer vision can help the transportation 
industry.

2.4 HUMAN-MACHINE TEAMING

The modeling of human-AI (HAI) and human-machine team (HMT) inter-
actions and how these interactions enhance or diminish human effectiveness and 
efficiency evolved from decades of research and development in human-systems, 
human-computer, and human-robot interactions. The Department of the Air 
Force (DAF) has over 70 years of experience integrating hardware and software of 
ever-increasing complexity into aircraft and spacecraft cockpits, back-end mission 
compartments, command and control and intelligence systems, and ground con-
trol stations.13 Aircrews’ comfort level in interacting with hardware and software 
systems in airplanes and spacecraft has derived primarily from extensive T&E and 
user feedback focused on issues such as ease of use, systems integration, reliabil-
ity, failure modes, resilience, and upward compatibility. In the pre-HAI era, the 
combination of well-defined and well-understood developmental, operational, 
and follow-on T&E processes and extensive operational use led to a broad under-
standing of potential hardware and software failure modes, hardware and software 
fault or failure indications, and corrective actions. This approach generated a 
level of confidence that led to greater trust in aircraft systems. At the same time, 
lessons learned from performance limitations linked explicitly to poor cockpit 
design during the Vietnam War led to extensive attention on human-systems 

 �13 The Air Force Research Laboratory (AFRL) 711 Human Performance Wing, for example, serves 
as a DAF and Joint DoD Center of Excellence for human performance sustainment, readiness, and 
optimization. The 711th’s areas of research include biological and cognitive research, warfighter 
training and readiness programs, and systems integration.
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teaming and aircraft cockpit and back-end ergonomics in the following decades. 
This culminated in developing DAF aircraft and space systems designed explicitly 
with human-system integration as a primary consideration.14 So far, DoD has 
been focused on AI that augments humans, rather than AI systems that might 
serve as teammates.

As one of the briefers to this committee noted however (see Appendix E), AI 
is fundamentally different: it is useful “to consider AI as a teammate of a different 
species.”15 This briefer suggested considering interactions between humans and AI-
enabled machines as similar to how humans interact with their pets—a consider-
able difference from all previous human-machine interactions that acknowledges 
the differences inherent in rapidly evolving AI capabilities. AI’s incredible potential 
will never be unleashed without changing how humans and machines interact in 
a more digitized future. Optimizing the integration of humans and AI-enabled 
machines, which in turn depends on redesigning human-machine interfaces and 
recalibrating human and machine roles and responsibilities, will be one of the 
most important and defining features of an AI-enabled future.16 When used opera-
tionally, a human-AI system is evaluated by how well the human team using that 
system performs their given tasks. One fundamental measure of success is when 
the human-AI system performs better than either the human alone, the AI system 
alone, or the previous version of the human-AI system.17

As learned during Project Maven and with other AI projects at the DoD JAIC/
CDAO, there are inherent limitations in adding an AI implementation as a “sidecar” 
to legacy systems instead of baking in AI while developing new systems. However 
impressive, the performance of AI-enabled legacy systems inevitably reaches a pla-
teau. System design and development must be completely revamped to get the most 
out of a human-smart machine team—similar to, but much more extensive than, 
the approach taken to cockpit redesign in the aftermath of the Vietnam War. This 
applies to all AI-enabled systems, not only those embedded in aircraft or space-
craft. It demands a different approach to training humans to work with “smart” 

 �14 The Boeing 737 Max aircraft crashes serve as a recent glaring example of poor human-system 
design.

 �15 N. Cooke, 2022, “Effective Human-Artificial Intelligence Teaming,” presentation to the commit-
tee, June 28, Washington, DC: National Academies of Sciences, Engineering, and Medicine.

 �16 This includes establishing the interdependencies between humans and machines. On the point 
of human-machine interdependence, see, for example, M. Johnson and J.M. Bradshaw, 2021, “How 
Interdependence Explains the World of Teamwork,” Pp. 122–146 in Engineering Artificially Intel-
ligent Systems, W.F. Lawless, et al., eds., Vol. 13000 of Lecture Notes in Computer Science, https://doi.
org/10.1007/978-3-030-89385-9_8.

 �17 The committee acknowledges the difficulty of formulating and assessing HSI-related measures 
of performance and measures of effectiveness, especially during the fielding of early versions of AI 
models that often initially perform worse than the non-AI system they are designated to replace.
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machines, unlike any previous systems, to better understand how humans and 
machines learn and improve through repeated interactions and interventions.18 
The committee underscores the importance of taking human-system integration 
and human-AI team effectiveness into account during the T&E of AI-enabled 
systems, including considering human needs and limitations as early as possible 
in the design and development process.19

Integrating AI elements into DAF weapon systems, decision support sys-
tems, and back-end office systems raises new challenges in the design, build, 
deployment, and employment stages, as well as in T&E. In addition to the 
human-systems integration issues noted above, T&E programs must address how 
to deal both with the best-case—and potentially unexpected—outcomes and 
unpredictable failures of AI-enabled systems. For example, AI-enabled systems 
are sensitive to domain shift, subject to adversarial attacks, and generally lack 
explainability or transparency (as discussed in Chapter 5). Additionally, a smart 
machine may assume more responsibilities from the human over time as human 
confidence in the system grows. As a result, the effective workload distribution 
between the end-user and the AI systems will change continuously. As systems 
become sufficiently advanced, the roles, responsibilities, and interdependencies 
between human and machine could constantly and seamlessly shift back and 
forth based on what humans and machines do best in each situation. In some 
cases, an AI-enabled machine may operate at speeds greater than the human 
operator is accustomed to or is comfortable with. These characteristics must 
all be dealt with during the AI T&E life cycle, but there are presently no clear 
standards to address them.

The concept of human-centered design, such as world-class user interface 
and user experience (UI/UX), is at the heart of every successful modern com-
mercial software product. Too often, however, user-focused, intuitive UI/UX has 
not been prioritized while developing government systems. UI/UX must be one of 
the primary criteria considered during the design phase of all future AI-enabled 
systems. In a future environment characterized by the widespread fielding of AI-
enabled systems, maximum performance can only be achieved by focusing on 
superior human-system integration, or what the U.S. Special Competitive Studies 

 �18 See, for example, this story on the new roles of AI “prompt engineers”: D. Harwell, 2023, “Tech’s 
Hottest New Job: AI Whisperer. No Coding Required,” The Washington Post, February 25, https://www.
washingtonpost.com/technology/2023/02/25/prompt-engineers-techs-next-big-job.

 �19 See, for example, National Academies of Sciences, Engineering, and Medicine, 2022, Human-AI 
Teaming: State-of-the-Art and Research Needs, Washington, DC: The National Academies Press. This 
report was written as a result of the Air Force Research Laboratory (AFRL) 711th Human Perfor-
mance Wing’s request to the National Academies to examine the requirements for appropriate use 
of AI in future operations.
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Project (SCSP) refers to as human-machine cognitive collaboration (HMC).20 In 
an AI-enabled digital future, users of AI-enabled systems analysts should be able 
to train with smart machines so that those systems adapt to an individual’s pref-
erences, the pace of their cognitive development, and even their past behaviors. 
As technology advances rapidly, highly-tailored human-machine interaction and 
interdependence are achievable.21 Human-machine testing and training processes 
will be vital to better understanding human-machine team composition, optimal 
assignment of human and machine roles and responsibilities, and effective and 
efficient workflow integration.22

In addition, these efforts should consider both technology readiness levels 
(TRLs) and human readiness levels (HRLs) and incorporate continuous assess-
ments of human-machine team performance.23 The consideration of HRL, while 
always important, becomes critical for AI-enabled systems that depend on continu-
ous human interaction, as opposed to traditional pre-AI systems that primarily 
report results for human consideration. Substantial and sustained human inter-
vention has compensated for poor HRLs in earlier and current fielded military 
systems. In future AI-enabled systems, human-machine integration must accord 
equal consideration to HRL and TRL. Otherwise, the DAF can expect sub-optimal 

 �20 This report makes the distinction between human-machine cognitive collaboration (HMC) and 
human-machine combat teaming (HMT). HMC focuses primarily on cognitive tasks, while HMT 
“will be essential for more effective execution of complex tasks, especially higher-risk missions at 
lower human costs” (p. 25). See Special Competitive Studies Project, 2022, Defense Interim Panel 
Report: The Future of Conflict and the New Requirements of Defense, Arlington, VA, https://www.scsp.
ai/wp-content/uploads/2022/10/Defense-Panel-IPR-Final.pdf.

 �21 Johnson and Vera examine the importance of human-machine “teaming intelligence.” They argue 
that “no AI is an island” (p. 18), meaning that there is no such thing as a completely autonomous 
system. Humans are always involved at some level, from design and development through oversight 
of fielded systems. M. Johnson and A. Vera, 2019, “No AI Is an Island: The Case for Teaming Intel-
ligence,” AI Magazine 40(1):16–28, https://doi.org/10.1609/aimag.v40i1.2842.

 �22 Guillory and Carrola refer to the concept of “Cognitive Mission Support,” which they define 
as systems designed to help humans deal more effectively with the inevitability of information and 
cognitive overload (p. 3). S.A. Guillory and J.T. Carrola, 2022, “What Online-Offline (O-O) Conver-
gence Means for the Future of Conflict,” Information Professionals Association, August 3, https://
information-professionals.org/what-online-offline-convergence-means-for-the-future-of-conflict.

 �23 Technology Readiness Levels (TRLs) are a method for estimating the maturity of technologies 
during the acquisition phase of a program. TRLs are measured from TRL 1 (basic principles observed) 
to TRL 9 (actual system proven in its operational environment). The Human Factors and Ergonomics 
Society notes that “many system development programs have been deficient in applying established 
and scientifically-based human systems integration (HSI) processes, tools, guidance, and standards, 
resulting in suboptimal systems that degrade mission performance” (p. 1). This draft paper includes 
a useful table assessing program risk due to HRL-Technology Readiness Level (TRL) misalignment 
(p. 6). See Human Factors and Ergonomics Society, 2021, Human Readiness Level Scale in the Human 
Development Process, ANSI/HFES 400-2021, draft version, Washington, DC, https://www.hfes.org/
Portals/0/Documents/DRAFT%20HFES%20ANSI%20HRL%20Standard%201_2_2021.pdf.
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results from both humans and machines. During testing, training, and fielding, 
overall human-system team performance can be optimized through continuous 
human feedback to the system as it returns its results.

Human-AI interactions are more intriguing and interesting as all such interac-
tions are based on trustworthiness. A recent review of the literature has identified the 
following six grand challenges that need to be addressed before efficient, resilient, 
and trustworthy HAI systems can be deployed.The six challenges are “developing 
AI that (1) is human well-being oriented, (2) is responsible, (3) respects privacy, 
(4) incorporates human-centered design and evaluation frameworks, (5) is gov-
ernance and oversight enabled, and (6) respects human cognitive processes at the 
human-AI interaction frontier.”24 The committee recommends that the DAF adopt 
and adapt similar principles (although this list does not reflect a prioritization 
scheme) when designing, developing, testing, fielding, and sustaining AI-enabled 
systems (in Chapter 3, the committee discusses in more detail the core concepts of 
trust, justified confidence, AI assurance, and trustworthiness).

The pace at which humans and AI make decisions is a challenge for HAI sys-
tems. Whether humans will trust smart machines is a major concern. It is especially 
acute when considering AI’s role in supporting combat operations. However, since 
trust is typically perceived as a binary yes-or-no concept, rather than considering 
whether end-users will “trust” their AI-enabled machines, we should consider 
instead how users gain justified confidence in smart systems over time. The process 
of building confidence in any AI-enabled system is continuous and cumulative. 
It never ends. A user’s confidence in a smart system will depend on context: the 
nature and complexity of the task, the system’s previous performance record, the 
user’s familiarity with the system, and so on. In general, continued successful per-
formance in lower-risk, lower-consequence tasks will give users more confidence in 
using AI when facing higher-risk, higher-consequence tasks. Until users gain more 
experience teaming with smart machines, they will face the dilemma of placing too 
much or too little confidence in their AI-enabled systems. The committee develops 
these concepts further in Chapter 3.

Finding 2-1: The DAF has not yet developed a standard and repeatable pro-
cess for formulating and assessing HSI-specific measures of performance and 
measures of effectiveness.

Conclusion 2-1: The future success of human-AI systems depends on optimizing 
human-system interfaces. Measures of performance and effectiveness, to include 

 �24 O.O. Garibay, B. Winslow, S. Andolina, et al., 2023, “Six Human-Centered Artificial Intelligence 
Grand Challenges,” International Journal of Human-Computer Interaction 39(3):391–437, https://doi.
org/10.1080/10447318.2022.2153320.
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assessments of user trust and justified confidence, must be formulated during 
system design and development, and assessed throughout test and evaluation and 
after system fielding.

Recommendation 2-1: Department of the Air Force (DAF) leadership should 
prioritize human-system integration (HSI) or HSI across the DAF, with an 
emphasis on formulating and assessing HSI-specific measures of perfor-
mance and measures of effectiveness across the design, development, testing, 
deployment, and sustainment life cycle.
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3
Test and Evaluation of DAF 

AI-Enabled Systems

The previous two chapters summarized the history of artificial intelligence 
(AI), ongoing Department of the Air Force (DAF) AI projects and defined key AI 
and AI test and evaluation (T&E)-related terms and definitions. This chapter be-
gins with a synopsis of the air force’s historical approach to traditional flight T&E. 
Section 3.2 discusses OSD and DAF T&E policies for AI-enabled systems (noting, 
as applicable, where there are still gaps in the formulation of AI T&E-specific poli-
cies). Section 3.3 addresses the importance of DevSecOps or artificial intelligence 
operations (AIOps)/machine learning operations (MLOps) to the design, devel-
opment, testing, fielding, and sustainment of national security and commercial 
sector AI-enabled systems. The speed of AI advances in the commercial sector over 
the past decade has included the commensurate design and deployment of T&E 
methodologies for AI-enabled commercial systems (autonomous vehicles, large 
language models, chatbots, recommendation engines, and so on), although DoD 
systems are more complex, consequential, and subject to more regulation than 
commercial systems. Section 3.4 presents a detailed discussion of these develop-
ments. In Section 3.5, the committee examines the core concepts of trust, justified 
confidence, AI assurance, and trustworthiness and how together they play an in-
strumental role in gaining end-user buy-in for fielded AI-enabled systems. Finally, 
Section 3.6 closes the chapter with a consideration of the critical importance of risk 
management throughout the entire AI life cycle, including risk awareness, analysis, 
acceptance, accountability, and responsibility.
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3.1 HISTORICAL APPROACH TO AIR FORCE TEST AND EVALUATION

The Air Force Test Center (AFTC) was established in 1951 to consolidate air-
craft, missiles, and other systems’ testing and evaluation functions under a single 
organization; to standardize and streamline test processes; ensure consistency in 
T&E practices; deal with the rapid growth in numbers and types of air force aircraft 
entering fielding; and reduce unacceptable aircraft mishap rates. Today, the AFTC 
conducts developmental and follow-on T&E of manned and unmanned aircraft 
and related avionics, flight control, munitions, and weapon systems. The AFTC 
comprises the Arnold Engineering Development Complex (AEDC) at Arnold AFB, 
the 96th Test Wing (TW) at Eglin AFB, the 412th TW at Edwards AFB, and the Test 
Pilot School (TPS) at Edwards AFB. The 96th TW is the T&E center for air-deliv-
ered weapons, navigation, and guidance systems; command and control systems, 
and AF Special Operations Command systems. It is the principal AF organization 
for command, control, communications, computers, intelligence, surveillance, and 
reconnaissance (C4ISR) developmental testing, often in coordination with the Air 
Combat Command’s 505th Command and Control Wing (a subordinate unit of 
the U.S. Air Force Warfare Center). The 412 TW plans, conducts, analyzes, and 
reports on all flight and ground testing of aircraft, weapons systems, software, 
components, and modeling & simulation (M&S). The 412 TW flies an average of 
90 aircraft and performs over 7,400 missions (over 1,900 test missions) annually. 
The USAF TPS at Edwards AFB trains pilots, navigators, and engineers on how to 
conduct flight tests.1

Understanding the historical context of AF T&E is important to conceptu-
alize the changes needed to effectively and efficiently test and evaluate AI and 
autonomous systems. The AF test process has always focused on data collection, 
while evaluation emphasizes data analysis and comparing expected-to-actual 
performance to support decision-making. T&E is accomplished through a T&E 
master plan (TEMP), which contains thresholds and objectives, evaluation cri-
teria, and milestone decision points. The TEMP is developed by the designated 
program management office (PMO). Traditionally, AF T&E has been divided into 
two primary components: developmental (D) and operational (O) T&E. At the 
basic level, DT&E centers on safety of flight concerns, while OT&E focuses on 
tactics and operating concepts. DT&E is conducted throughout the acquisition 
process to assist in engineering design and development and to verify that techni-
cal performance specifications are achieved. It includes the T&E of components, 
subsystems, hardware and software integration, and production qualification 
testing. DT&E examines the system’s compliance with contractual requirements 

 �1 Air Force Test Center, 2021, “Fact Sheet: Air Force Materiel Command,” https://www.aftc.af.mil/
About-Us/Fact-Sheets/Article/2382275/air-force-materiel-command.
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and the ability to achieve key performance parameters (KPP) and key system 
attributes (KSA).

OT&E, on the other hand, measures the overall ability of a system to ac-
complish a mission when used by representative personnel in the environment 
planned for the operational employment of the system. It conducts independent 
evaluations, operational assessments, and the ability to satisfy KPPs and KSAs. 
OT&E is conducted under realistic operational conditions, as close as possible to 
those expected in combat operations. The objective of OT&E is to determine a 
system’s operational effectiveness, operational suitability, survivability, and lethality 
for combat. It is a mission capability assessment.

For aircraft and aircraft systems, DT&E and OT&E have traditionally been 
treated as two distinct phases of T&E that do not overlap. If a system under test 
fails DT&E, the engineering design and development process must be addressed 
before testing. Once a system passes DT&E, it transitions to OT&E. If it fails 
OT&E, it reverts to DT&E to re-evaluate its technical performance specifications 
and ability to comply with contractual requirements. Once a system passes OT&E, 
it is cleared for operational fielding. After initial fielding, it will be declared to 
have achieved initial operating capability (IOC), a formal milestone noting that 
an operational (non-test) unit can employ the system effectively. Once IOC is 
declared, the system may require further development and testing to achieve its 
full capabilities. Once that occurs, the system will be declared fully operational 
capability (FOC). The FOC milestone is achieved when a system has demonstrated 
it can perform all its intended missions and functions in various operational 
environments and is fully integrated into the overall operational structure—the 
operational unit can employ and maintain the system. It is not unusual for FOC to 
be declared for several years after the IOC milestone, especially for more complex 
weapon systems. The FOC milestone represents completion of a system’s T&E 
and development efforts.

As discussed in more detail in the following sections, extant T&E processes that 
have worked so well for most DAF weapon systems over the past 70 years, with a 
clear delineation between DT&E and OT&E, were not designed to be applied to 
T&E of AI implementations and software and consequently fail.

3.2 AI AND DevSecOps/AIOps IN THE DAF AND  
COMMERCIAL SECTOR

The DAF has been transitioning from waterfall to agile development meth-
odology, albeit at its traditional pace. The transition initially only encompassed 
basic development and deployment processes but has expanded to incorporate 
security evaluations earlier in the development process (DevSecOps). The mi-
gration from waterfall to DevSecOps-based processes is largely instigated by the 
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software’s increasingly wide and deep footprint in the complex systems the DAF 
deploys. While modern software has been a large catalyst for this evolution, the 
development and deployment of AI capabilities will be a true forcing function. AI 
will introduce speed into decision systems due to the simple automation of tradi-
tionally human-driven tasks and the ability to process previously insurmountable 
amounts of data. Additionally, the AI life cycle is inherently iterative and requires 
infrastructure to enable the continuous maintenance and improvement required 
on deployed models. The increase in pace will be an additional stress on traditional 
development and evaluation infrastructure.

It is a certainty that deployed AI models will encounter operational conditions 
not represented in the original training corpus and behave in unanticipated ways. 
A simple example of an unanticipated behavior could be an AI model labeling an 
object in an image incorrectly because it has never seen the object in training. This 
trite example is appropriate for illustration but can easily be extended to higher-
risk and higher-consequence scenarios. There are significant implications of an 
AI-enabled system mislabeling an object that subsequently informs a high-risk, 
high-consequence targeting decision. Because of the guarantee of encountering 
unknown scenarios, adopting agile development improves the T&E processes for 
AI-enabled systems.

AI implementations are developed cyclically, often referred to as either AIOps 
or MLOps, and require continuous training, evaluation, and retraining as opera-
tional conditions change. Figure 3-1 shows a generic architecture and the cycli-
cal feedback required to enable AI deployment to the edge. No organization can 
manage this production cycle and develop high-performing AI systems without 
using agile development methodologies that integrate T&E across the AI life cycle. 
Deployed models require “maintenance” that addresses shifts in operational condi-
tions not represented in training data. This architecture is not a substitute for the 
safety systems and processes encompassing deployed AI systems; however, you can-
not safely and effectively deploy AI without this iterative approach. For AI-enabled 

FIGURE 3-1  A generic architecture and the cyclical feedback required to enable AI deployment at 
the edge. SOURCE: Courtesy of NVIDIA.
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systems, the DAF is currently not prepared for this level of continuous integration 
and continuous deployment or delivery.

For example, Figure 3-2 illustrates the connection between the development, 
testing, and deployment of the AI capabilities required to deploy an autonomous 
vehicle. Of significance in this example is not only the scale of infrastructure 
and tooling to create the original models but also the supporting fleet of cars 
that continually collect more operational data and refine the deployed models. 
Some autonomous vehicle systems will selectively record data correlated with an 
AI-driver disagreement to reduce the rate of data to curate and improve model 
performance. In addition, model creation and refinement are supported by a 
robust simulation architecture for handling edge cases and domain shifts known 
a priori, as well as those observed operationally. This simulation environment 
supports both the creation of synthetic data as well as hardware-in-the-loop 
training.

Key components of this architecture include:

•	 Trained labelers: Labelers are trained on tooling and the data they are 
labeling.

•	 Continuous monitoring, retraining, and redeployment of AI models: Model 
performance is constantly monitored. Models are regularly retrained and 
redeployed.

FIGURE 3-2  Connections between the development, testing, and deployment of the AI capabilities 
required to deploy an autonomous vehicle. SOURCES: Courtesy of NVIDIA; DGX image courtesy of 
NVIDIA and Oak Ridge National Laboratory, Department of Energy.
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•	 Instrumented deployment platforms to capture ML-ready data: Both the de-
ployed models and the data streams they consume must be instrumented 
to capture the behavior deviation and the observations that manifested the 
performance shift.

•	 Synthetic data engines and supporting digital twins: Enable faster incorpora-
tion of emergent threats, observed domain shifts, or previously unknown 
edge cases. These components must be built for the appropriate domains 
and modalities.2

These three components have distinct implications for traditional T&E pro-
cesses in the DAF. Methodology and infrastructure are required to detect when 
model behavior has deviated from expected performance during operations, to re-
train the model with the new, associated observations, and then to evaluate how the 
new model performs under both previous and newly-observed conditions. Integral 
to the retraining of models in operation is the ability to retrieve these observations. 
For the DAF, this implies platforms that adopt AI-enabled systems or components 
require the capabilities to record ML-ready data from their sensors and associated 
actuators and then send that data back to a training environment in an easily con-
sumable form. These requirements have significant impacts beyond test processes. 
They must be accounted for in platform and sensor operational requirements, up 
to and including at the PMO or system program office level.

Similarly, synthetic data engines and digital twins are key to supplementing 
datasets with training examples for situations where there is either insufficient real 
data or data are too difficult to collect. Synthetic data engines and digital twins must 
be relevant, adaptable, and considered to be part of the AI life cycle. For the DAF, 
sensor models and situational constructions of interest are represented in modern 
modeling and simulation environments that can keep pace with the cadence re-
quired for maintaining a collection of supporting AI models.

There are MLOps solutions on the commercial market today that facilitate this 
life cycle. The solutions are varied and support myriad deployment scenarios. In 
combination with commercial T&E vendors, some of these solutions can supple-
ment an organization with the infrastructure and processes required to maintain 
an enterprise deployment of AI-enabled systems. Larger institutions that were 
early adopters of AI integration have evolved large internal systems and tooling to 
support their requirements. However, the DAF is neither one of the early adopters 

 �2 For a private industry example of unprecedented use of a synthetic environment to virtually 
“build” and evaluate an entire automobile factory and production line 2 years before physical pro-
duction begins. See BMW Group, 2023, “BMW Group at NVIDIA GTC: Virtual Production Under 
Way in Future Plant Debrecen,” PressClub Global, March 21, https://www.press.bmwgroup.com/
global/article/detail/T0411467EN/bmw-group-at-NVIDIA-gtc:-virtual-production-under-way-in-
future-plant-debrecen?language=en.
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nor is it feasible for the DAF to be a direct consumer of unmodified commercial 
solutions. There are fundamental requirements rooted in operational requirements 
and constraints of DAF systems that demand a different approach. Figure 3-3 
highlights the areas where the DAF’s requirements can be met with gaps in current 
commercial architectures. These gaps represent the areas where the DAF needs to 
invest in modifying commercial solutions to meet service needs.

Real-time operational testing implies the need to continuously maintain and 
test AI-enabled solutions once they are operational. This represents a fundamental 
departure from the traditional waterfall approach that characterized historical DAF 
T&E efforts and is a critical change from current approaches. This change in ap-
proach is necessary to handle domain shifts and edge cases. Commercial solutions 
will certainly incorporate methodology for monitoring and retraining models, 
but it is unlikely they will incorporate processes that capture the complex system 
integration and risk frameworks that apply to DAF systems, especially safety-
critical systems in the foreseeable future. The DAF should invest in synthetic data 
engines, live virtual constructive environments, data repositories, and support for 
digital twins representative of their modalities and platforms of interest to facilitate 
rapid model retraining and maintenance. Data standards must be extended to the 
platforms to support this retraining and enable fast capture of AI-ready data to 
facilitate retraining around model failure events.

Many commercial MLOps solutions assume constant, high-bandwidth con-
nectivity to the AI-enabled systems they support, with many of their deployment 
patterns dependent on commercial cloud infrastructure. This assumption breaks 
down in most DAF operational environments, especially during crises or conflicts. 
Many forward-deployed organizations will not have the luxury of high-bandwidth 

FIGURE 3-3  Areas where the DAF’s requirements can be met with gaps in current commercial 
architectures. SOURCE: Courtesy of NVIDIA.
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data connections back to large MLOps factories to retrain and retest model up-
dates. The decentralized nature of forward-deployed operations likely requires 
some edge-based computing for model maintenance and testing while in the field, 
along with trained personnel capable of retraining and retesting models under 
suboptimal conditions. Model updates produced at any edge node would also need 
to eventually be transmitted back to some centralized management system, imply-
ing a federated learning model. The DAF AI T&E champion should outline and 
prioritize these requirements and coordinate with commercial providers to adapt 
available solutions accordingly.

Finding 3-1: The DAF will have similar training infrastructure requirements 
to support the development and maintenance of AI-enabled systems. The 
decentralized nature of DAF operations means training cannot be supported 
by standard commercial offerings. The committee knows of no commercial 
off-the-shelf solution presently supports these requirements.

Recommendation 3-1: The Department of the Air Force artificial intelligence 
testing and evaluation champion should outline and prioritize these train-
ing infrastructure requirements and coordinate with commercial providers 
to adapt available solutions accordingly.

Developing and deploying AI-enabled systems implies that there are com-
panion deployment systems designed to receive and run the trained models in 
operations. These systems would comprise the sensors and reasoning systems 
that leverage the deployed models to extract information or make decisions. Any 
AI-enabled system that needs to operate at the edge—whether originating from 
commercial or military sources—will have unique size, weight, and power (SWAP) 
challenges. The DAF deploys systems and platforms that typically have bespoke 
security and SWAP requirements. These requirements will likely be constraints to 
the edge computing architectures that complement and integrate with commer-
cial MLOps solutions. AI-enabled systems require high-performance computing 
solutions—typically graphics processing units (GPUs) or field programmable gate 
arrays (FPGAs)—to run AI models. Deployment configurations vary dramatically 
across DAF platforms, making the integration of these devices challenging and 
time-consuming. This fractured and bespoke approach to computing requirements 
limits the DAF’s ability to drive features into these commercial products and results 
in costly customizations per platform that are not repeatable or cost-effective.

The DAF should invest in standards that enable the consolidation of com-
puting requirements into fewer modular configurations designed to meet the 
needs of AI and autonomous systems. Through consolidation, the addressable 
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market for these solutions becomes larger and more feasible for commercial ven-
dors to tackle at a scale that would accelerate time to market and reduce cost. It 
would also reduce the test footprint by simplifying test configurations for DT&E 
and OT&E.

3.3 OSD AND DAF T&E POLICIES FOR AI-ENABLED SYSTEMS

The DAF’s current requirements formulation and acquisition processes con-
tinue a tradition of directly testing various capabilities against functional require-
ments under expected operational deployment conditions. As noted in previous 
chapters, the rapid introduction of AI-enabled capabilities across the DAF over 
the next several years requires an assessment of the applicability of established 
DAF-wide T&E approaches to AI and revising current policies or developing new 
ones that apply specifically to AI T&E. This is equally true whether AI or hML is 
integrated into a program of record, or added separately after a system has already 
been fielded. Based on presentations by DAF test enterprise leaders to this commit-
tee, the committee concludes that the DAF has not yet developed a standard and 
repeatable process for integrating, testing, and sustaining AI capabilities in DAF 
major acquisition programs. The few examples the committee knows of, such as 
Project Maven, consist of capabilities added to major programs (such as Air Force 
Distributed Common Ground Station (AF DCGS)) after fielding, outside of the 
traditional program of record acquisition processes. As one speaker commented, 
“We are not classically trained to do this [type of] T&E.”

Finding 3-2: The DAF has not yet developed a standard and repeatable process 
for integrating, testing, acquiring, developing, and sustaining AI capabilities.

Much like the advances in DAF-wide T&E for C2, cyber, and ISR systems over 
the past decade, the committee expects the DAF to make up ground with AI T&E 
relatively quickly. This assumes that DAF leaders prioritize AI T&E accordingly, 
applying sufficient resources in funding, infrastructure, policies, and personnel 
management. Despite its current shortcomings, the DAF is no further behind in AI 
T&E than most other government organizations and agencies. The DAF can take 
advantage of the extensive work already carried out by OSD CDAO developing 
AI T&E policies, processes, and frameworks, as well as applying lessons learned 
from commercial companies that have substantially advanced their internal AI 
T&E processes over the past several years (the committee includes some examples 
later in this chapter). This is an opportune time for the DAF to craft an AI T&E 
vision and commit to a long-range AI T&E strategy and implementation plan that 
includes specific and measurable objectives and goals.
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At the OSD level, myriad instructions, directives, and policies referenced 
throughout this report exist to guide T&E. However, most of these are not AI-
specific, and OSD DOT&E has not yet published DoD-wide formal AI T&E guid-
ance.3 Moreover, as noted elsewhere in the report, there has been limited direction 
addressing the lack of a clear distinction between developmental test (DT) and 
operational test (OT), or between initial operational T&E (IOT&E) and follow-
on operational T&E (FOT&E), for AI capabilities. This represents a considerable 
challenge for the department.4

Finding 3-3: OSD DOT&E has not yet published DoD-wide formal AI T&E 
guidance.

Finding 3-4: There is a lack of clear distinction between DT and OT phases 
for AI capabilities.

Conclusion 3-1: A lack of formal AI development and T&E guidance represents a 
considerable challenge for the DAF as AI-based systems emerge.

As noted in the Project Maven case study, the JAIC T&E division refined 
Maven’s T&E processes, procedures, and practices, and under their new or-
ganizational structure, the OSD CDAO is publishing AI T&E playbooks and 
providing AI T&E frameworks to OSD DOT&E. These include frameworks for 
testing AI-enabled systems, human-system integration (HSI), operational test, 

 �3 OSD director of operational test and evaluation (DOT&E) is an independent entity whose direc-
tor does not report to the secretary of defense, but to Congress. The DOT&E director is the principal 
staff assistant and senior advisor to the Secretary of Defense on operational test and evaluation in 
DoD. The DOT&E mission is to issue DoD OT&E policy and procedures; review and analyze the 
results of OT&E conducted for each major DoD acquisition program; provide independent assess-
ments to the Secretary of Defense, the under secretary of defense for acquisition and sustainment 
(USD(A&S)), and Congress; make budgetary and financial recommendations to the secretary 
regarding OT&E; and oversee major DoD acquisition programs to ensure OT&E is adequate to 
confirm operational effectiveness and suitability of the defense system in combat use. DOT&E is 
tasked to assess operational effectiveness, suitability, survivability, and sustainability. The organiza-
tion currently relies on red teams for evaluation of DoD cyber capabilities but does not presently 
manage any AI-specific red teams.

 �4 While the committee realizes this is an OSD-level concern, it recommends that the DAF AI T&E 
champion coordinate with OSD (especially OSD CDAO, OSD DOT&E, the DASD [DT&E], and 
the test resource management center or TRMC), the joint staff, and the military services to explore 
organizational solutions that address the lack of clear lines and lanes between AI developmental and 
operational test and evaluation. Also, as noted in the report summary, the DAF AI T&E champion 
should assess what broader DAF-wide organizational changes are called for to reflect the differences 
between AI T&E, and T&E for all other air force systems and capabilities.
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and operationalizing responsible AI. Also, as noted elsewhere, the 96th Opera-
tions Group is developing AI T&E academic materials and curricula, and the 
DAF-MIT AIA is developing an AI T&E Guidebook (which will not be official 
policy). Finally, in 2020 the AFTC’s 412th Test Wing published Test and Evalua-
tion of Autonomy for Air Platforms, a technical information handbook.5 While it 
deliberately does not address AI-enabled autonomous systems, it could be modi-
fied to address the T&E of AI-enabled autonomous systems and promulgated 
DAF-wide.

Until DOT&E and the DAF publish and promulgate formal AI T&E guidance, 
the committee recommends that the DAF consider adopting the OSD CDAO’s AI 
T&E playbooks and frameworks. The tri-center should adapt these documents 
based on Air and Space Force AI T&E requirements, modifying them as necessary 
once OSD DOT&E promulgates official department-wide AI T&E directives, poli-
cies, and instructions. It is worthwhile to integrate the appropriate commercial best 
practices, which are documented in Chapter 3.

DOT&E is in the early stages of formulating AI T&E guidance. As a DOT&E 
official6 told the committee, DOT&E recognizes that the department is “not where 
we need to be . . . with respect to even machine learning, never mind AI.”7 He noted 
that AI T&E is a young field, with very few, if any, operational use cases across the 
department, almost no DoD-wide AI T&E best practices,8 and almost no histori-
cal military AI T&E studies or reports to fall back on. The official echoed a critical 
question from this report’s summary, namely, for AI-enabled learning systems, 
“How much testing is enough?” He also emphasized addressing where, how, and 
when AI testing is accomplished. He acknowledged not only that DOT&E’s “tried-
and-true” test designs of the past were insufficient for fully testing AI-enabled 
systems, but that DOT&E did not yet possess the same kind of tried-and-true test 
designs or processes for AI. He noted that agile principles (see Section 3.3) were 
critical in developmental test and postulated that they would be equally important 

 �5 R.A. Livermore and A.W. Leonard, 2020, Test and Evaluation of Autonomy for Air Platforms, 
Edwards, CA: 412 Test Wing, Edwards Air Force Base, https://apps.dtic.mil/sti/pdfs/AD1105535.pdf.

 �6 M. Crosswait, 2023, presentation to the committee, September 28, Washington, DC, National 
Academies of Sciences, Engineering, and Medicine.

 �7 The same official urged the committee to make available to the entire department this report’s 
findings and recommendations, with the goal of accelerating the development and promulgation of 
AI T&E best practices DoD-wide.

 �8 With the exception of the OSD/CDAO’s development of AI T&E playbooks and frameworks, 
which CDAO has provided to DOT&E. The committee expects DOT&E will publish their own 
frameworks, modeled after CDAO’s products, after concluding their ongoing comprehensive review 
of all DOT&E test guidance.
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in operational test (while acknowledging that DOT&E had not yet determined what 
exactly this would entail for AI-enabled systems).9

In addition to underscoring the importance of developing an AI T&E culture 
and supporting the development of a more operationally relevant AI T&E risk 
management framework (RMF), DOT&E is analyzing how to test AI-enabled 
systems for unexpected outcomes (to include testing boundary conditions and 
system behavior under varying conditions);10 how training, validation, and test 
data should be selected and evaluated as part of the overall AI T&E process11 (to 
include assessing security vulnerabilities and susceptibility to adversarial attack); 
how to account for the black-box nature of AI models; how to evaluate user trust 
and justified confidence in AI-enabled systems (under both expected and unantici-
pated operational conditions); and how to assess the ability of AI models to adapt 
to different missions and in different domains. Also, similar to DOT&E’s extensive 
use of cyber red teams during operational test and evaluation (to include when 
integrated into combatant command exercises), it intends to evaluate the effects 
of adversarial attacks on AI-enabled systems, especially those systems designated 
as mission- and safety-critical.12

For DoD systems performing mission- or safety-critical missions, especially 
those capable of generating lethal effects or that can lead directly to generating 
lethal effects, the committee agrees with DOT&E’s recommendation that, before 
fielding a substantive update to an AI capability, such systems must be operationally 
tested before the new version is fielded operationally. This type of “mini-OT” can 
be accomplished in the future by testing the updated capability in a digital twin 
or with an equivalent modeling and simulation architecture under operationally-
realistic conditions (simulated or actual). Additionally, some processing architec-
ture is required for system testing including data acquisition, cleaning, and labeling. 
The goal is to test updated capabilities as rapidly as possible (to include validation, 
verification, and accreditation) based on operational requirements, test conditions, 

 �9 The official emphasized that for non-AI-enabled programs under his purview, adherence to agile 
principles has led to high-performance fielded systems, especially several Missile Defense Agency 
(MDA) missile defense projects. He suggested that a large part of the success derives from the prin-
ciple, described in the Requirements section of this report, of early and frequent interaction between 
users, developers, program managers, and testers throughout the entire life cycle of a program.

 �10 The DOT&E official explained that one of the organization’s primary objectives is to ensure 
that, for AI-enabled systems in DoD, the “intolerable outcomes” do not occur (while acknowledging 
that the definition of intolerable outcomes had to be determined for each AI-enabled system and 
integrated system-of-systems).

 �11 The DOT&E official mentioned the possibility of maintaining the equivalent of a “war reserve 
mode” (WRM) of AI training data, that could be used to continue to develop and sustain AI models 
in the aftermath of adversarial attacks against existing datasets or fielded models.

 �12 OSD DOT&E has relied on DOT&E-sponsored and service-led cyber ted Teams for the past 
several years. See for example, DOT&E, 2022, “Cyber Assessment Program,” FY 2021 Annual Report, 
https://www.dote.osd.mil/Portals/97/pub/reports/FY2021/other/2021cap.pdf.
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and the use of test personnel with experience testing the original fielded model 
and system.13 Understanding the limitations of data drift, domain adaptation, and 
AI model boundary conditions (see Section 4.3) will help to increase the level of 
confidence that a certified system will operate as expected once deployed. Based on 
lessons from Project Maven and the JAIC, the committee expects that the extent of 
T&E required for each subsequent AI model version will depend on the scope of the 
changes included in each update (this is also the state of industry best practices; see 
Section 3.5). In most cases, later versions of fielded models will require a shorter 
T&E process than during earlier updates. Backed by industry best practices (see 
Section 3.5), updates to AI-enabled mission- or safety-critical systems require full 
transparency between testers, developers, and end-users to ensure all stakeholders 
have a common understanding of how much additional T&E is required and ac-
ceptable before fielding each update.

In summary, OSD DOT&E has provided an initial roadmap for how to redesign 
T&E for DoD AI-enabled systems to reflect the substantial differences between 
the T&E of traditional DoD systems and the T&E of AI capabilities. It does not, 
however, currently have the resources or the expertise, nor is the necessary founda-
tional knowledge available, to make the changes needed to move beyond vision to 
immediate DoD-wide implementation. While DOT&E provides further guidance 
in the form of official policies, directives, instructions, templates, and frameworks, 
the committee recommends that in the near term, the DAF continue to work closely 
with DOT&E, the Deputy Assistant Secretary of Defense for Developmental Test 
and Evaluation (DASD(DT&E)), and the CDAO AI T&E community of interest 
while adopting or adapting T&E best practices from across the government (for 
example, OSD CDAO’s AI T&E playbooks and frameworks), the private sector, and 
academia. The committee recommends that the DAF AI T&E champion focus on 
new test designs for AI-enabled systems that incorporate the core systems engi-
neering principles of non-AI-enabled systems14 while adding new elements that 
reflect the best AI T&E practices from academia, commercial industry, and other 
government test organizations.

 �13 As noted elsewhere in the report, the Missile Defense Agency (MDA) makes extensive use of 
modeling and simulation (M&S) during missile defense system design and testing, to include inte-
grating actual hardware and M&S as part of an overall design, development, and testing architecture 
(through the command and control, battle management, and communications [C2BMC] program).

 �14 To include, for example, principles that straddle the traditional and AI T&E worlds such as 
MIL-STD-882F, the replacement to MIL-STD-882E, DoD Standard Practice: System Safety, 11 May 
2012. This system safety standard practice is a key element of systems engineering (SE) that provides 
a standard, generic method for the identification, classification, and control of hazards. The revised 
document will include a section on AI and ML, to include the AI criticality index (AICI), which 
will be used to determine the level of rigor (LOR) of software assurance activities to be imposed on 
the software. Department of Defense, 2012, DoD Standard Practice: System Safety, MIL-STD-882F, 
Washington, DC, https://cdn.ymaws.com/system-safety.org/resource/resmgr/documents/Draft_MIL-
STD-882F.pdf.
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The introduction of AI-enabled capabilities into the Air Force and Space Force 
has been limited and has proceeded slowly. The DAF has not addressed the per-
vasive implications of AI throughout the DAF or how T&E has to be integrated 
throughout the entire AI life cycle, from design through sustainment. The DAF has 
not yet committed to making immediate, sustained investments in AI governance, 
workforce development, AI research and development, AI development and T&E 
infrastructure, AI standards and practices, and targeted experimentation. The DAF 
has not developed the digital infrastructure needed to support AI development and 
T&E, and the requisite investments have not been programmed into the DAF bud-
get. The lack of a designated AI T&E champion at the senior executive or general of-
ficer level, with commensurate SECAF-delegated authorities and resources at their 
disposal, has contributed to the low priority accorded to AI T&E across the DAF.

To ensure that the future AI-enabled Air Force and Space Force remain the 
most capable, responsible, and safe defense forces in the world, the committee 
recommends that DAF leaders prioritize AI development and T&E and address 
the implications across the entire DAF, including committing the necessary level 
of resources—people and funding. As a key initial step, the DAF should update its 
AI T&E vision and commit to a long-range AI T&E strategy and implementation 
plan that includes specific and measurable objectives and goals. The DAF, in coor-
dination with OSD CDAO, should update its analysis of the resources required for 
digital modernization across the Air and Space Forces to reflect AI T&E-specific re-
quirements, and sustain those resources in future DAF budgets.15 The DAF should 
leverage investments from OSD CDAO, OSD DOT&E, and OSD DASD(DT&E) 
and make or sustain AI-specific modernization investments in the Test Resource 
Management Center (TRMC),16 DAF CDAO, and Air Force Materiel Command’s 
(AFMC’s) Digital Transformation Office (DTO), and work closely with TRMC to 
identify AI T&E needs that will be addressed with TRMC funding and use DAF 
AI-specific modernization investments to address AI T&E gaps not being pursued 
by TRMC. These investments should include major and near-term investments in 
modern AI stacks across AFTC, Air Force Operational Test and Evaluation Center 
(AFOTEC), and the United States Air Force Warfare Center (USAFWC) (to include 
access to enterprise cloud-as-a-service and platform-as-a-service [PaaS] capabili-
ties); modeling and simulation; the Virtual Test and Training Center (VTTC) at 

 �15 See, for example, National Academies of Sciences, Engineering, and Medicine, 2022, Digital 
Strategy for the Department of the Air Force: Proceedings of a Workshop Series, Washington, DC: The 
National Academies Press, https://doi.org/10.17226/26531.

 �16 TRMC has several efforts under way to develop tools for testing AI. TRMC’s T&E and S&T 
program, a 6.3 advanced technology development effort, has 10 test technology areas (TTAs). Au-
tonomy and AI test (AAIT) is one of the TTAs. DAF T&E representatives participate in the AAIT 
working group (WG). AFRL and Edwards AFB have been the two USAF organizations represented 
in the AAIT WG.
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Nellis AFB and the joint simulation environment (JSE); digital synthetic range 
environments at Edwards AFB and Eglin AFB; digital twins; and live-virtual-
constructive (LVC) integration. The DAF AI T&E champion should work closely 
with the DAF’s representatives on the TRMC AAIT (Autonomy and Artificial Intel-
ligence Test) WG to identify AI T&E projects for TRMC’s T&E and S&T program, 
while the DAF should also increase its representation on the AAIT WG.

Recommendation 3-2: The Department of the Air Force (DAF) leadership 
should prioritize artificial intelligence (AI) testing and evaluation (T&E) 
across the DAF with an emphasis on a radical shift to the continuous, rigor-
ous technical integration required for holistic T&E of AI-enabled systems 
across the design, development, deployment, and sustainment life cycle.

3.4 AI T&E IN THE COMMERCIAL SECTOR

The committee was briefed by representatives from current defense industrial 
base companies actively developing T&E capabilities for the department,17 the au-
tonomous vehicle safety group at NVIDIA, and an ISO working group developing 
a consensus report on functional safety for AI-enabled systems. It is important to 
note that while commercial industry is more sophisticated than the DAF in imple-
menting and scaling up T&E for large scale AI deployments, it is still very much a 
field under development.

The ISO/IEC (International Electrotechnical Commission) TR 5469 work-
ing group18 is currently drafting a consensus report with representative members 
across several stakeholder industries, including avionics, robotics, healthcare, and 
autonomous vehicles. While in draft form, the standard is potentially subject to 
change from the briefed version, the TR 5469 report has the potential to provide 
a well-informed framework for thinking about risk, mitigation, and verification 
and validation (V&V) for AI-enabled systems. The main goal of the TR5469 re-
port is “to enable the developer of safety-related systems to appropriately apply AI 
technologies as part of safety functions by fostering awareness of the properties, 
functional safety risk factors, available functional safety methods, and potential 
constraints of AI technologies.” Many of the main points proposed in the draft 
align with what the committee found from the commercial sector, summarized in 
Table 3-1. Therefore, it is the committee’s recommendation that the DAF track the 
progress of this report through the publication process and leverage it as a starting 
point for adapting their T&E processes for AI-enabled systems.

 �17 For example, Morse Corporation and Calypso AI.
 �18 This is a working group under the auspices of the International Organization for Standardization 

tasked with establishing standards on functional safety and AI systems.
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Recommendation 3-3: The Department of the Air Force should track 
the progress of the International Organization for Standardization/
International Electrotechnical Commission TR 5469 working group re-
port through the publication process and leverage it as a starting point for 
adapting their testing and evaluation processes for artificial intelligence–
enabled systems.

Work presented by the industry executing on DoD T&E requirements pre-
sented a rich set of T&E tooling that has been iterated on through various pilot 
AI efforts and informed by engagements with non-DoD commercial customers. 
These techniques have begun to either be packaged in, or at least inform, various 
government off-the-shelf (GOTS) developer libraries being released to the broader 
community. When integrating these toolchains into larger systems, these developer 
kits codify the pilot projects’ best practices for statistical analysis and Application 
Program Interface (API) designs. Specifically, through work on Project Maven, one 
developer could develop and implement T&E systems that achieved significant re-
ductions in model evaluation time for model vendors (from months to hours). This 
evaluation system enables the fast iteration of model development against withheld 
test datasets for model comparison. While these techniques have become more 
sophisticated over time, they still only codify specific mathematical approaches 
for validating models’ accuracy in isolation. To date, the committee found these 
contributions are very biased toward computer vision perception algorithms and 
have yet to extend their capabilities to fully address system-level T&E and the im-
pact integration has on system-wide verification and validation.

Finding 3-5: DAF AI contributions to date have been focused on computer 
vision perception and natural language processing algorithms and have yet to 
extend to fully address system-level T&E.

Autonomous vehicle development was selected as a valid case study for the 
committee to investigate due to its similarity to some of the autonomy goals of 
Air Force programs. It is the modern example of AI being integrated into a safety-
critical system that requires complex system-level integration. Commercial indus-
try is increasingly investing in the technology fundamental to making autonomous 
vehicles a reality for consumers and participating in standards creation that govern 
their deployment. A presentation by a representative of NVIDIA’s autonomous 
vehicles safety team gave an overview of their system-wide approach to managing 
the T&E of developed AI models within an extension of a systems engineering risk 
modeling framework (shown in Figure 3-4).

Within this framework, the development of the AI-enabled system begins with 
defining the product specification (e.g., what does the system need to do?). The 
product specification drives the risk model creation that, in turn, generates the 
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functional requirements to achieve the goals of the system. The product specifica-
tions and the risk model are continuously updated through cyclical review. Two 
cornerstone concepts of the architecture were the assertion that AI implementa-
tions will always have a failure mode and that there are no known formal methods 
to demonstrate the “correctness” of AI. To manage the risks associated with these 
assertions, NVIDIA implements a methodology for decomposing and reducing 
requirements into the minimal components required to make validation and 
verification tenable. While the decomposition of requirements into fundamen-
tal components simplifies testing, it has a limitation with deep neural networks. 
Multi-model DNNs in isolation can induce common cause failures (CCFs), where 
multiple failures occur due to the same cause, that become impossible to capture 
in testing (see Figure 3-5). Because there are no known technologies to analyze the 
CCFs of DNNs, the failure rate of DNNs is hard to quantify, even in the presence of 
diverse inputs. An alternative design pattern pairs DNNs with rule-based software 
blocks and empowers an arbiter module to decide the best decision given the risk 
(see Figure 3-6). Through analysis and due diligence, a software arbiter “inherits” 
the argumentation so that it achieves a failure rate of 10−2n.

To safely and effectively integrate AI capabilities into safety-critical system pro-
cesses, continual test and refinement approaches must be implemented to manage 
against accepted and residual risks. Validation and verification are accomplished 
in both complex simulation environments and real-world test fleet deployments. 
Both capabilities feed refinements back into product specification. Additionally, 
the processes and tools that manage and implement the T&E must themselves be 

FIGURE 3-4  NVIDIA’s system-wide approach to managing the T&E of AI models. SOURCE: Courtesy 
of NVIDIA.
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secure and safe. To that end, NVIDIA has built suites of cloud-native toolchains to 
support the scale and latency requirements to support the iterative cycle required. 
Each step of the process, shown in Figure 3-7, is analyzed to identify and eliminate 
errors that could lead to safety-critical DNN results. Every software tool is evaluated 
for safety-critical bugs and user errors. NVIDIA asserted that they treat cloud-
based DNN generation as a manufacturing process and view the infrastructure as 
an “AI factory.”

It is equally important and critical to point out that the same V&V rigor ap-
plied to the creation and testing of the AI models themselves must be extended 
to the data used to create the models, further emphasizing the critical importance 
of data within the AI life cycle. Two main questions asked about all data used to 
train AI models are: Is the sample being considered sound? And: Is it complete? 
Sound data implies the sample is valid and a true member of the input space for 
a model. A dataset is complete when one can say that all samples that can affect 
safety have been identified. Demonstrating the soundness of data can be addressed 
with various “levels of difficulty” of a few approaches (e.g., simulation, replay 
of collected data, replay of augmented data, labeling of ground truth, and A/B 
testing). Demonstrating the soundness of data remains a significant challenge 
in the AI field and is currently managed through detailed limitation analysis of 
operational design domains (ODDs or “the scenarios”) and test escapes via the 
test fleet or deployed fleet. Further discussion of these significant challenges can 
be found in Section 3.6.

As shown in Figure 3-8, there are several valid test methodologies that can 
be leveraged within a T&E framework for autonomous vehicles. Each methodol-
ogy has its place, but also presents unique challenges. The methodologies are the 
following:

•	 Replay of the collected data: Sensor and meta-data collected in (large) field 
data campaigns are replayed as input to the system under test (SUT).

FIGURE 3-7  NVIDIA’s “AI factory.” SOURCE: Courtesy of NVIDIA.
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•	 Replay of augmented data: Collected data are augmented with 3D model-
ing to create input data that would otherwise be very difficult to collect on 
public roads.

•	 Simulation: Simulation of all input to the ego-vehicle (which contains the 
sensors) and closed-loop response to all output from the ego-vehicle.

•	 Track and road testing: System-level behavior testing on track or public 
roads.

3.5 CONTRAST OF COMMERCIAL AND  
DoD APPROACHES TO AI T&E

Large structural and organizational limitations within the DAF T&E ecosys-
tem will affect the DAF’s ability to meet the T&E requirements to operationalize 
AI implementations. A major source of these challenges has to do with the dis-
crete differences between traditional waterfall approaches and the cyclical nature 
of actions required to support the AI life cycle. To highlight these limitations, it is 
worthwhile to walk through a conceptual example of how an AI capability would 
progress from development through to deployment using the current systems 
in place for T&E within the DAF. The point of walking through this example is 
to clearly point out where the current accepted T&E approach for the DAF will 
not support the AI life cycle. For simplification purposes, one can make several 
assumptions:

•	 All the integration requirements for a deployment platform are satisfied.
•	 All data collection and labeling requirements are satisfied.
•	 Reasonable requirements can be constructed that describe developmental 

and operational requirements.

FIGURE 3-8  Comparison of test methodologies for autonomous vehicle systems. SOURCE: Courtesy of 
NVIDIA.
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•	 The developmental test community has the infrastructure needed to verify 
the delivered capability meets those requirements.

•	 The operational test community can iteratively test the capability and has 
the AI infrastructure in place to retrain as needed or can reach back to the 
contractor to facilitate the modifications.

With all these assumptions in place, the current process would produce a capabil-
ity that needs to be handed off to the operational test community. At some point in the 
process, the test community will certify this new AI capability, and it will be handed 
over to an operational unit to employ and maintain. This part of the deployment 
process essentially amounts to the “operations and maintenance” (O&M) of the AI 
model, yet these operational units have no capacity, requirements, or infrastructure 
to monitor, retrain, or re-certify models as the AI life-cycle demands. Furthermore, 
there are no personnel in these units whose training would enable them to facilitate 
this type of O&M. The current processes fail to meet the AI life-cycle requirements.

The gaps become more obvious when contrasting the DAF’s current approach 
to AI T&E against what approaches successful AI-ready commercial organizations 
are employing. Table 3-1 presents what the committee observed as the major dif-
ferences between commercial approaches and the DAF’s current approach and is 
not intended to be comprehensive. An AI-ready organization in this context means 
a group can safely, reliably, and continuously create and deploy AI-enabled systems 
into operational environments.

TABLE 3-1  Comparison of AI T&E Approaches Between Commercial Industry and the DAF
Commercial Approach DOD/DAF Approach

• � Significant up-front investments in data 
centralization, processing capability, and tooling 
for making data accessible, discoverable, and 
organized. Data are easily formed into datasets 
for training purposes.

• � Treat the creation of AI implementations as 
a manufacturing process. Assumes secure, 
scalable infrastructure to support the continuous 
development and test of AI components.

• � Employ a methodical use-case-based 
development of AI requirements that focuses on 
AI integration, not bolt-on design patterns.

• � Decomposes requirements based on test and 
evaluation requirements.

• � Continuous development and monitoring are 
supported by an operational deployment fleet and 
large-scale simulation environments.

• � Large-scale investments in promoting data as a 
first-class citizen by improving accessibility and 
discoverability via data feeds and APIs. Lacking 
any rigor or tooling around dataset creation, 
tracking, and improvement.

• � AI infrastructure (compute, AIOps services, and 
data management services) investments are ad 
hoc and lack consistency.

• � AI requirements are functional and not developed 
without considering test and evaluation.

• � Simulation and digital twin capabilities are ad hoc 
and not scalable.

• � Development to deployment process is not well 
aligned with the AI life cycle.
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3.6 TRUST, JUSTIFIED CONFIDENCE, AI ASSURANCE, 
TRUSTWORTHINESS, AND BUY-IN

Trust has been at the heart of the relationship between the operational com-
munity and the air force test community for decades. When operational units 
accept a new aircraft, new hardware that is integrated into an aircraft, or new or 
updated embedded aircraft software, they start from a position of explicit trust. 
It is a level of trust earned over the past 70 years by working with an air force test 
community characterized by its credibility, expertise, professionalism, discipline, 
and track record. Operational buy-in is also gained through the air force test com-
munity’s well-understood standardized sequence of flight testing—DT, OT, IOT&E, 
DOT&E, live-fire test and evaluation (LFT&E), and follow-on testing. And when a 
fielded system fails for any reason, operational crews trust that the test community 
will identify and fix the problem before returning the system to the field.

Once the test community approves a system to be fielded, line organizations 
rely on testing results (to include explicit warnings and cautions about performance 
envelopes), academic instruction, simulators, and flights to gain confidence in the 
system’s performance. Academic training focuses on normal performance param-
eters, expected critical failure modes, and how to respond to cockpit indications 
of degraded system performance. Even for highly complex integrated systems 
such as an aircraft terrain-following radar, crews adapt relatively quickly through 
dedicated training—academics, simulators, and flights—and trust and confidence 
in the original equipment manufacturer and air force test enterprise software and 
hardware testing processes.

The air force test community’s reputation and track record have been instru-
mental in allowing end-users to gain and maintain deep confidence in traditional 
aircraft and other hardware systems. With hardware, trust is typically perceived as 
a binary yes-or-no concept. AI, however, is fundamentally different. Existing T&E 
procedures and standards do not work well for nascent and immature software 
capabilities, especially the black-box, self-learning, adaptive, data-centric nature of 
AI. Furthermore, it is hard to gain buy-in for AI-enabled capabilities when the DAF 
test community has not yet established the same kind of testing policies, processes, 
and procedures that have guided flight testing for the past 70 years. This lack of 
an established baseline for AI T&E makes it difficult to establish the same level of 
trust between the testing and operational communities that has been instrumental 
in fielding traditional hardware systems.

The general concept of justified confidence has gained traction in the AI com-
munity over the past several years. This term recognizes the challenges with using 
the concept of trust that has worked for other legacy hardware systems. It refers 
to the level of certainty or reliability achieved through direct evidence collected 
during design and operational test events that can be assigned to the outputs or 
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decisions made by AI-enabled systems. It is a term that describes how well a system 
can be expected to justify its decisions or predictions, considering the data used for 
training, the algorithms used, and any potential biases or limitations in the system. 
Justified confidence helps to provide evidence, transparency, and accountability in 
AI-enabled systems and helps establish trust in their output.

Instead of looking at trust in AI-enabled systems as a binary concept, users 
of AI-enabled systems will seek to gain justified confidence in that system over 
time. Justified confidence will also have different meanings at different levels. For 
example, the test community will establish internal conditions determining when 
an AI-enabled system can be released to the field. At the operational level, users 
will be less interested in tests performed in controlled or curated environments 
than in whether the system performs as expected under operational conditions and 
what could happen if the system degrades or fails. At the policy level, for higher-
consequence, higher-risk systems such as AI-enabled weapons, decision-makers 
will seek to gain sufficient confidence in a system before approving operational 
deployment, measured in ways such as expected behavior, boundary conditions, 
potential failure modes, and possible consequences or consequence sets. Calibrating 
confidence in any AI-enabled system will be continuous and cumulative for end-
users. It will never end. A user’s confidence—and it is important to make a distinc-
tion between “trust” and functional acceptance—in a smart system will depend on 
context: the nature of the task, the complexity of the question to be answered, the 
system’s previous performance record, the user’s familiarity with the system, and so 
on, and may vary over time. In general, continued high performance in lower-risk, 
lower-consequence tasks will give users more confidence when facing higher-risk, 
higher-consequence tasks. Until users gain more experience teaming with smart 
machines, they will face the dilemma of placing too much or too little confidence 
in AI-enabled systems. Justified confidence applies any time a human and machine 
interact—not just when they are working together as a team.

When referring to AI-enabled systems, justified confidence is increasingly 
joined with the concepts of assured systems and trustworthiness. David Tate of IDA 
provides a framework for determining whether a system is assured and defining 
whether an AI system is trustworthy. He proposes that a system is assured: “when 
the relevant authorities have sufficient justified confidence in the trustworthiness 
of the system to authorize its employment in specified contexts.”19 He also defines 
a system to be trustworthy to the extent that “(1) when employed correctly, it will 

 �19 Institute for Defense Analysis (IDA), 2021, “Trust, Trustworthiness, and Assurance of AI and 
Autonomy,” Alexandria, VA, https://apps.dtic.mil/sti/trecms/pdf/AD1150274.pdf. Tate also argues that 
three key features determine the level of assurance: whose trust is needed (i.e., a regulating authority); 
the level of confidence required (given potential benefits and risks); and the (context-dependent) level 
of confidence justified by the available evidence (p. 5).
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dependably do well what it is intended to do; (2) when employed correctly, it will 
dependably not do undesirable things; (3) when paired with humans it is intended 
to work with, it will dependably be employed correctly.”20 The committee agrees 
with his assertion that “the purpose of T&E becomes clear: it is the activity that 
produces the evidence that completes the needed assurance arguments.”21 The 
committee recommends that the DAF adopt this framework as part of its AI T&E 
practices.

AI assurance is another term that, along with justified confidence and trust-
worthiness, replaces the binary concept of trust for AI-enabled systems. It refers 
to the process of evaluating, monitoring and ensuring the reliability, effectiveness, 
robustness, and safety of AI systems. AI assurance comprises a set of practices and 
methodologies for assessing the quality of AI models and systems, including veri-
fying their accuracy and performance, detecting and mitigating potential biases, 
and evaluating their ethical and societal implications. The goal of AI assurance is 
to provide confidence in the decision-making processes of AI systems and to pro-
mote the responsible and trustworthy deployment of AI technologies. For DoD, AI 
assurance combines AI T&E and the tenets of responsible AI (RAI).22

RAI helps promote the safe, lawful, and ethical use of AI. AI T&E should be 
designed to test system performance across the RAI attributes of fairness, inter-
pretability, reliability, and robustness. The NSCAI final report includes a detailed 
framework to guide the responsible development and fielding of AI implementa-
tions, which includes key considerations for policymakers and technical practitio-
ners across the entire AI life cycle.23 The DAF should consider using this framework 
and the NIST AI RMF24 in establishing AI Assurance best practices. The committee 
concluded that DAF does not need to sacrifice speed to ensure adherence to the 
principles of RAI: it is possible to move at the speed of operational relevance while 
accounting for the importance of fielding AI implementations that are reliable, 

 �20 IDA, 2021, p. iii.
 �21 IDA, 2021, p. 9.
 �22 Department of Defense, 2022, Responsible Artificial Intelligence Strategy and Implementation 

Pathway, Washington, DC, https://www.ai.mil/docs/RAI_Strategy_and_Implementation_Pathway_ 
6-21-22.pdf.

 �23 National Security Commission on Artificial Intelligence, 2021, The National Security Commission 
on Artificial Intelligence Final Report, Arlington, VA, https://www.nscai.gov/wp-content/uploads/ 
2021/03/Full-Report-Digital-1.pdf, p. 384.

 �24 National Institute of Standards and Technology, Department of Commerce, 2023, Artificial Intel-
ligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1, Washington, DC, https://nvlpubs.
nist.gov/nistpubs/ai/NIST.AI.100-1.pdf. See also R. Elluru, C. Howell, and M. Garris, 2023, National 
Security Addition to the National Institute of Standards and Technology Artificial Intelligence Risk Man-
agement Framework Playbook (NIST AI RMF), Special Competitive Studies Project, https://www.scsp.
ai/wp-content/uploads/2023/04/National-Security-Addition-to-NIST-AI-RFM.docx-1.pdf.
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safe, lawful, and ethical.25 The NIST AI RMF concludes that the safe operation of 
AI systems is improved through26 the following:

•	 Clear information to deployers on the responsible use of the system
•	 Responsible decision-making by deployers and end-users
•	 Explanations and documentation of risks based on empirical evidence of 

incidents

The DAF should work with OSD CDAO to adopt a definition of AI assurance. 
One definition to consider is “a process that is applied at all stages of the AI engi-
neering life cycle ensuring that any intelligent system is producing outcomes that 
are valid, verified, data-driven, trustworthy, and explainable to a layman, ethical 
in the context of its deployment, unbiased in its learning, and fair to its users.”27 
The committee also recommends that the DAF adopt and promulgate DoD’s RAI 
principles and implementation plan.

Recommendation 3-4: The Department of the Air Force should adopt a defi-
nition of artificial intelligence (AI) assurance in collaboration with Office of 
the Secretary of Defense Chief Digital and AI Office. This definition should 
consider whether the system is trustworthy and appropriately explainable; 
ethical in the context of its deployment, with characterizable biases in con-
text, algorithms, and datasets; and fair to its users.

Until AI is fielded widely across the DAF, the air and space force test commu-
nities gain DAF-wide agreement on AI TEVV definitions, and the test community 
establishes DAF-wide AI testing policies, processes, and procedures, the committee 
recommends that the DAF—through the AI T&E champion—codify the concepts 
of justified confidence, trustworthiness, and AI assurance for all AI-enabled sys-
tems. The committee expects that operational buy-in of AI-enabled systems will be 
neither instantaneous nor permanent. Instead, the test community and end-users 

 �25 See, for example, M. Ekelhof, 2022, “Responsible AI Symposium—Translating AI Ethical Principles 
into Practice: The U.S. DoD Approach to Responsible AI,” West Point: The Lieber Institute, Novem-
ber 23, https://lieber.westpoint.edu/translating-ai-ethical-principles-into-practice-us-dod-approach.

 �26 National Institute of Standards and Technology, Department of Commerce, 2023, Artificial Intel-
ligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1, Washington, DC, https://nvlpubs.
nist.gov/nistpubs/ai/NIST.AI.100-1.pdf. See also R. Elluru, C. Howell, and M. Garris, 2023, National 
Security Addition to the National Institute of Standards and Technology Artificial Intelligence Risk Man-
agement Framework Playbook (NIST AI RMF), Special Competitive Studies Project, https://www.scsp.
ai/wp-content/uploads/2023/04/National-Security-Addition-to-NIST-AI-RFM.docx-1.pdf.

 �27 This definition of AI Assurance was proposed by F.A. Bararseh, L. Freeman, and C.-H. Huang, 
2021, “A Survey on Artificial Intelligence,” Journal of Big Data 8(60), https://doi.org/10.1186/
s40537-021-00445-7.
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will have to work closely together over the next several years in an iterative process 
to gain a better understanding of AI TEVV, gather more insights on AI-enabled 
system performance under all conditions, and establish AI testing roles, respon-
sibilities, and authorities at all levels across the DAF, to include at the unit level.

3.7 RISK-BASED APPROACH TO AI T&E

The formulation of T&E requirements across the AI life cycle is linked inex-
tricably to the concept of risk management. One cannot be considered in isolation 
from the other. In this section, the committee considers operationally-oriented 
risks pertaining to the integration of AI capabilities into DAF systems and the 
fielding decisions associated with those systems. In Chapter 5, the committee ex-
amines a broader and more detailed set of technical risks, particularly corruption 
and adversarial attacks, throughout the AI life cycle.

As with the T&E of all other DAF systems, risk management will play a vital 
role in testing AI-enabled systems. Risks are increasing as AI moves beyond specific-
purpose systems to more general-purpose AI systems that are expected to become 
vastly more capable in different operational settings and across multiple domains.

Risks will also increase significantly as different AI-enabled systems are inte-
grated into and begin to interact across system-of-systems architectures in complex, 
highly dynamic multi-domain environments and demonstrate online learning 
and even emergent behavior.28 Therefore, the DAF should incorporate an AI risk 
management framework (RMF), such as the National Institute of Standards and 
Technology (NIST) AI RMF,29 in all AI-related design, development, fielding, and 
sustainment. Any AI RMF includes assessing and understanding the potential 
risks of fielding AI-enabled systems based on different levels of dedicated T&E, 

 �28 See, for example, J. Harvey, 2018, “The Blessing and Curse of Emergence in Swarm Intelligence 
Systems,” Chapter 6 in Foundations of Trusted Autonomy: Studies in Systems, Decision and Control, 
H.A. Abbas, ed., Vol. 117, https://doi.org/10.1007/978-3-319-64816-3_6. Harvey defines emergence 
as behavior “at the global level that was not programmed in at the individual level and cannot be 
readily explained based on behaviour at the individual level,” p. 117.

 �29 National Institute of Standards and Technology, Department of Commerce, 2023, Artificial Intel-
ligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1, Washington, DC, https://nvlpubs.
nist.gov/nistpubs/ai/NIST.AI.100-1.pdf. “The AI RMF refers to an AI system as an engineered or 
machine-based system that can, for a given set of objectives, generate outputs such as predictions, 
recommendations, or decisions influencing real or virtual environments” (p. 1). The NIST AI RMF 
defines trustworthy AI as AI that “is valid and reliable, safe, secure and resilient, accountable and 
transparent, explainable and interpretable, privacy enhanced, and fair with their harmful biases 
managed” (pp. 2–3). See also R. Elluru, C. Howell, and M. Garris, 2023, National Security Addition to 
the National Institute of Standards and Technology Artificial Intelligence Risk Management Framework 
Playbook (NIST AI RMF), Special Competitive Studies Project, https://www.scsp.ai/wp-content/
uploads/2023/04/National-Security-Addition-to-NIST-AI-RFM.docx-1.pdf.
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communicating risks to decision-makers and end-users, and determining responsi-
bility and accountability for system failure or unanticipated performance problems.

The NIST AI Risk Management Framework (RMF) states that “AI risk manage-
ment offers a path to minimize potential negative impacts of AI systems, such as 
threats to civil liberties and rights while providing opportunities to maximize posi-
tive impacts. Furthermore, addressing, documenting, and managing AI risks and 
potential negative impacts can lead to more trustworthy AI systems.”30 It also notes 
that risk management “should be continuous, timely, and performed throughout 
the AI system life-cycle dimensions.” Since this study is directed primarily toward 
AI T&E under operational conditions, the committee does not address the kinds 
of broad societal-level risks described in the NIST AI RMF. The committee recom-
mends, however, that the DAF adopt the NIST’s AI RMF Core, comprising the four 
major functions of Govern, Map, Measure, and Manage.31

Major risk factors commonly associated with the design and operation of AI-
enabled systems are potential drop in performance due to domain shift (discussed 
in Section 3.2), vulnerability due to adversarial attacks (discussed in Chapter 5), 
perception of bias, privacy concerns, and a lack of explainability. Therefore, T&E 
protocols should assess the impact of each of these factors on the operational vi-
ability of AI-enabled systems and take the needed corrective measures.

Every AI capability, like every hardware system, introduces operational risks. AI 
shares the combination of safety and security risks with all other extant hardware 
and software systems.32 Applying the NIST AI RMF categories can be a useful de-
composition of some of the risks inherent in AI-enabled systems.33 The DAF T&E 
enterprise has a distinguished performance record of assessing and mitigating the 

 �30 National Institute of Standards and Technology, Department of Commerce, 2023, Artificial Intel-
ligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1, Washington, DC, https://nvlpubs.
nist.gov/nistpubs/ai/NIST.AI.100-1.pdf.

 �31 The NIST AI RMF describes these major functions as follows: “Govern: A culture of risk manage-
ment is cultivated and present; Map: context is recognized and risks related to context are identified; 
Measure: Identified risks are assessed, analyzed, or tracked; Manage: Risks are prioritized and acted 
upon based on a projected impact.” 

 �32 MIL-STD-88F, “DoD Standard Practice System Safety,” will replace the May 11, 2012, version 
(MIL-STD-88E) and will include a section on AI and ML. It will also include the AI criticality in-
dex (AICI), which will be used to determine the level of rigor (LOR) of software safety assurance 
activities to be imposed on the software. See Department of Defense, 2012, Department of Defense 
Standard Practice: System Safety, MIL-STD-882F, Washington, DC, https://cdn.ymaws.com/system-
safety.org/resource/resmgr/documents/Draft_MIL-STD-882F.pdf. For an insightful examination of 
an integrated approach to safety and security, see, for example, W. Young and N.G. Leveson, 2014, 
“An Integrated Approach to Safety and Security Based on Systems Theory,” Communications of the 
ACM 57(2):31–35.

 �33 For current organizations using NIST RMF companies to help manage risk, it is important to 
realize that the NIST AI RMF requires a different set of expertise and would likely require a separate 
organization to perform the AI risk analysis.
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risks inherent in hardware systems, especially flight and space weapon systems. 
As a form of self-learning software, however, AI presents novel sources of risk in 
the operational environment that are not presently well understood by the DAF 
test community due to a lack of familiarity with how AI systems operate, lack of 
operational experience with AI-enabled capabilities, and the inherent characteris-
tics of advanced AI models. This problem will become especially acute when AI is 
integrated into a system-of-systems or network-of-networks architecture, leading 
to unknown or unanticipated cumulative and aggregate risks.

Potential risks must be considered at every stage of the AI life cycle, beginning 
with the formulation of AI capability requirements and associated T&E metrics 
and performance measures through operational fielding and sustainment via CI/
CD processes.34 AI-enabled capabilities should be fielded using a “measured risk” 
approach (see Section 4.3) as rapidly as operational requirements dictate while 
taking steps to prevent the emergence of unnecessary risks resulting from fielding 
capabilities that are immature, insufficiently tested, unproven, or unsafe. As one 
speaker argued, in some cases, the performance of an AI-enabled capability may 
be so compelling that leaders will have to make a risk-based decision to field even 
in the absence of full trust or a completely explainable system.

The committee acknowledges the challenges inherent in finding and maintaining 
the right balance between speed-to-field and the rigors of comprehensive T&E. As 
opposed to processes used for traditional hardware fielding decisions, DAF leaders 
should embrace the concept of “field to learn,” putting capabilities in the hands 
of users after sufficiently rigorous “back bench” T&E by a certified AI T&E team 
and incorporating end-user feedback to make iterative improvements to fielded 
systems via accepted CI/CD processes (with the commensurate amount of T&E for 
all model updates).35 Until the DAF test, program office, and operational commu-
nities gain more experience developing, testing, and fielding AI-enabled systems, 
the committee recommends biasing toward a more cautious—but not inherently 
lethargic—approach to ensure sufficient testing before any AI technology is fielded. 
Precaution should guide but not unduly constrain the DAF from introducing a new 
product or process whose ultimate effects are disputed or unknown.

One speaker noted that AI model complexity is currently doubling every 
2 months. This is a staggering rate of change. Unfortunately, as presently structured, 
the committee expects that the DAF T&E enterprise is not capable of adapting to 
this rapid evolution.

 �34 As one example, the Chief Architect from a commercial company briefed the committee on their 
use of traditional safety engineering V-models that had been adapted to reflect the entire AI life cycle, 
up to and including the impact of data feedback loops and CI/CD on overall system safety.

 �35 S. Moore, 2023, “Right Hands, Right Place: Why We Must Push Military Technology Experi-
mentation to the Edge,” Defense One, January 19, https://www.defenseone.com/ideas/2023/01/
right-hands-right-place-why-we-must-push-military-technology-experimentation-edge/382000.
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Operational risks will increase as AI implementations (see Section 1.3) expand 
beyond narrow, single-task, and single-domain computer vision and natural lan-
guage processing (NLP) capabilities to more advanced AI, such as reinforcement 
learning (RL); reinforcement learning with human feedback (RLHF); transfer 
learning (TL); semi-supervised, self-supervised and unsupervised learning; and 
foundational models and generative AI that will be vastly more capable in dif-
ferent operational settings and across multiple domains. Risks will also increase 
significantly as different AI-enabled systems are integrated into and begin to inter-
act across system-of-systems architectures and demonstrate emergent behavior.36 
Therefore, as discussed above, the DAF should incorporate an AI risk management 
framework in all AI-related design, development, fielding, and sustainment; the 
committee recommends incorporating key elements of the NIST AI RMF, “Spe-
cial Competitive Studies Project (SCSP)” in the National Security Addition to the 
NIST AI RMF Playbook,37 and ISO/IEC standards and frameworks,38 along with 
any DAF-specific additions. Any AI RMF includes assessing the potential risks of 
fielding AI-enabled systems based on different levels of dedicated T&E, commu-
nicating risks to decision-makers and end-users, and determining responsibility 
and accountability for system failure or unanticipated performance problems. Risk 
assessments should also address the risks presented by user unfamiliarity with 
AI-enabled systems (risks expected to decrease but not disappear with increasing 
user familiarity with such systems).

 �36 See, for example, Richard Danzig’s 2018 monograph, “Technology Roulette.” Danzig offers a 
compelling caution that “Experience with nuclear weapons, aviation, and digital information systems 
should inform discussion about current efforts to control artificial intelligence (AI), synthetic biol-
ogy, and autonomous systems. In this light, the most reasonable expectation is that the introduction 
of complex, opaque, novel, and interactive technologies will produce accidents, emergent effects, and 
sabotage. In sum, on a number of occasions and in a number of ways, the American national security 
establishment will lose control of what it creates” and that “twenty-first technologies are global not just 
in their distribution, but also in their consequences.” R. Danzig, 2018, “Technology Roulette: Managing 
Loss of Control as Many Militaries Pursue Technological Superiority,” Washington, DC: Center for New 
American Security, https://s3.us-east-1.amazonaws.com/files.cnas.org/hero/documents/CNASReport-
Technology-Roulette-DoSproof2v2.pdf?mtime=20180628072101&focal=none.

 �37 R. Elluru, C. Howell, and M. Garris, 2023, National Security Addition to the National Institute of 
Standards and Technology Artificial Intelligence Risk Management Framework Playbook (NIST AI RMF), 
Special Competitive Studies Project, https://www.scsp.ai/wp-content/uploads/2023/04/National-
Security-Addition-to-NIST-AI-RFM.docx-1.pdf?utm_source=substack&utm_medium=email.

 �38 See, for example, ISO/IEC SC 42. SC 42 is a joint committee between the IEC and ISO. It serves 
as the focus and proponent for the ISO/IEC joint technical committee (JTC 1) international stan-
dardization program on AI and provides guidance to JTC, IEC, and ISO committees developing AI 
applications. Draft ISO/IEC TR 5469, “Functional Safety and AI Systems,” is expected to be published 
in 2023. Also, see, for example, SAE AS 6983, “Process Standard for Development and Certification/
Approval of Aeronautical Safety-Related Products Implementing AI.”
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For all AI-enabled capabilities, the DAF should clearly distinguish between 
mission- and safety-critical systems and all other AI-enabled systems. Mission- and 
safety-critical systems demand a much higher level of rigor and scrutiny through-
out the entire T&E process, from design and development through sustainment 
under operational conditions. This includes an examination of reliability, repeat-
ability, predictability, directability, safety, and security. When individual AI-enabled 
systems are integrated into network-centric architectures, this analysis also requires 
individual platform-centric assessments as well as aggregated assessments.39 As 
noted earlier in this chapter, the committee heard examples from the private sector 
of an integrated, iterative, and comprehensive approach to AI T&E for safety-
critical systems such as autonomous vehicles. These represent a good example of 
a complex system employed in a safety-critical operation requiring perception, 
decision-making, and other autonomous characteristics.

In summary, when fielding AI-enabled capabilities under operational con-
ditions, DAF end-users, program offices, DevSecOps/AIOps teams, testers, and 
leaders must use a tailored AI RMF to address a series of risk-related questions at 
each stage of the AI life cycle.40 These include, though are not limited to: what are 
the risks at each stage of the AI life cycle (including when AI systems are fielded, the 
potential risk to mission, and risk to force)? How are those risks determined and 
measured (including red teams’ roles and responsibilities in assessing adversarial 
AI attacks against AI models)? Who assesses each risk? How are risks briefed to 
decision-makers at each level, and who has the authority to accept each risk or, if 
the risk is deemed unacceptable, to pause further development or fielding? What 
are the risks of catastrophic failure, either in isolation or when integrated across 
multiple architectures (i.e., worst-case failure modes)? How are risks managed and 
mitigated where necessary (including adjusting AI T&E requirements as neces-
sary)? Finally, who is held responsible and accountable for system failure?

Recommendation 3-5: The Department of the Air Force should develop 
standardized artificial intelligence (AI) testing and evaluation protocols to 
assess the impact of major AI-related risk factors.

 �39 Aggregated risk assessments of complex network-centric architectures should be completed by 
a multidisciplinary group that has broader visibility into all the components of the network and 
system-of-systems architecture.

 �40 See, for example, Appendixes A–C for a proposed comprehensive AI RMF for the U.S. Intelligence 
Community, In C.R. Stone, 2021, “The Integration of Artificial Intelligence in the Intelligence Com-
munity: Necessary Steps to Scale Efforts and Speed Progress,” Joint PIJIP/TLS Research Paper Series, 
73, https://digitalcommons.wcl.american.edu/research/73.
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4
Evolution of Test and Evaluation 
in Future AI-Based DAF Systems

4.1 INTRODUCTION

When the committee first set out to answer the questions driving this report, 
there was a healthy discussion about the study’s scope. At first, the questions asked 
appeared constrained, and the boundaries for areas of investigation seemed clear. 
However, after investigating each question, it became obvious to the committee 
that these questions could not be viewed in isolation. The areas being explored 
were as entangled with the complexity of the Department of the Air Force (DAF) 
bureaucracy as they were with the complexity of the technology. A common refrain 
in several data-gathering sessions was that the “DAF has a tiger by the tail”—a 
euphemism for the unexpected and unintended consequences that come with 
bold moves. These unexpected and unintended consequences are not necessarily 
unwanted or unneeded, but potentially more impactful than the DAF has antici-
pated. The evolution required to effectively operationalize artificial intelligence (AI) 
will affect a significantly larger part of the DAF than seems obvious at first glance, 
as the committee expects AI to be embedded throughout the entire DAF over the 
next decade. This chapter discusses the actual scope of the impact of these advance-
ments—not only on the test community but also on the requirements processes 
and DAF culture. The chapter also reviews trends in AI technology that illustrate 
how quickly the field is changing, and hence how important it will be to maintain 
a firm yet flexible grip on this tiger’s tail as AI-based systems emerge ever more 
rapidly across the DAF.
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4.2 APPOINTING A DAF AI T&E CHAMPION

The magnitude of change this report suggests will require dedicated leader-
ship, continuous oversight, and individual responsibility and accountability. This 
is best accomplished by formally designating a senior AI test and evaluation (T&E) 
official who reports to the Secretary of the Air Force, is responsive to the Chiefs of 
the Air and Space Forces, and who has the necessary resources and authorities to 
implement DAF-wide changes.

The 2022 dual-hat designation of the 96th Operations Commander as the 
chief of AI test and operations for the DAF Chief Data and AI Office (CDAO) is a 
positive and important step, and the report committee views the 96 OG/CC as one 
of the primary beneficiaries of this report. However, as currently constituted, the 
chief of AI test and operations for the DAF CDAO does not have the authority to 
make the magnitude of changes across the DAF this committee believes necessary 
to enable AI T&E.

Finding 4-1: Currently, no single person below the level of the Secretary or the 
Chiefs of the Air and Space Forces has the requisite authority to implement 
DAF-wide changes to successfully test and evaluate AI-enabled systems.

For this reason, the committee recommends that the Secretary of the Air Force 
formally designate an overall DAF AI T&E champion at the general officer or senior 
executive service level in the DAF, and delegate to them the necessary authorities to 
make changes on behalf of the Secretary and Service Chiefs. This advocate should 
have breadth and depth of experience in both AI and T&E, to include extensive 
experience with human-systems integration and agile software T&E. This advocate 
should establish an AI governance structure that includes formally delineating AI 
T&E reporting relationships and roles and responsibilities across the cri-Center, 
the future U.S. Space Force Operational Test Agency (OTA), the DAF CDAO, and 
operational air, intelligence, C2, space, and cyber units.1 This process should in-
clude assessing what broader DAF-wide organizational and governance changes are 
needed to reflect the differences between AI T&E and T&E for all other Air Force 
systems and capabilities.

The AI T&E champion should be charged with implementing the DAF AI T&E 
vision, granted the requisite authorities and resources (to include personnel) and 
fully empowered to help realize that vision for the DAF. The DAF AI T&E cham-
pion should focus on new test designs for AI-enabled systems that incorporate the 
core systems engineering principles of non-AI-enabled systems while adding new 

 �1 Because of the unique T&E expertise required, the committee does not propose dual-hatting the 
DAF CDAO as the DAF AI T&E champion. Given the centrality of data to AI testing, however, the 
offices of the AI T&E champion and CDAO will be inextricably linked.
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elements that reflect the best AI T&E practices from academia, the private sector, 
and other government test organizations.

Recommendation 4-1: The Secretary of the Air Force and chiefs of the Air 
and Space Forces should formally designate a general officer or senior civil-
ian executive as the Department of the Air Force (DAF) artificial intelligence 
(AI) testing and evaluation (T&E) champion to address the unique chal-
lenges of T&E of AI systems identified above. This AI T&E advocate should 
have the requisite AI and T&E credentials, and should be granted the requi-
site authorities, and responsibilities, and resources to ensure that AI T&E is 
integrated from program inception and appropriately funded, realizing the 
DAF AI T&E vision.

A successful model for appointing and empowering the AI T&E champion 
can be found with the response of the DAF to a previous National Academies 
study. In 2015, a study on the role of experimentation in the Air Force innovation 
life cycle2 recommended as its highest priority that a single individual at the top 
of the organization be responsible for “catalyzing” their desired outcome. That 
report emphasized the need for a singular authority responsible for “owning” the 
problem—and articulated that successful innovative organizations ensured that a 
“clearly identified individual was assigned responsibility for leading this work, was 
evaluated on their success in doing so, and woke up every workday focused on how 
to get it done better.” The DAF adopted this recommendation with great success.

General Mark Welsh, the then-Air Force Chief of Staff (CSAF), designated 
General Ellen Pawlikowski, then AFMC Commander, to spearhead the innovation 
and experimentation effort. Gen Pawlikowski instituted the strategic development 
planning and experimentation group (SDPE) to execute this responsibility. This 
group reported directly to Gen. Pawlikowski, and a new capability development 
council (CDC) reported to Gen. Welsh. Significantly, both of these institutions were 
chartered by the CSAF before the conclusion of the experimentation study. Notably, 
the SDPE continues to stimulate innovation across the Air Force—the next genera-
tion air dominance (NGAD) group is a salient example. Gen. Duke Richardson 
(the current AFMC commander) also recently established a digital transformation 
office (DTO) within AFMC; the AFMC commander used this similar approach to 
rectify the shortfall in implementing an effective digital strategy in the Air Force.

This model is just one successful demonstration that the DAF has of identifying 
and empowering a champion who is able to effectively implement the necessary 
changes.

 �2 National Academies of Sciences, Engineering, and Medicine, 2016, The Role of Experimentation 
Campaigns in the Air Force Innovation Life Cycle, Washington, DC: The National Academies Press, 
https://doi.org/10.17226/23676.
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4.3 ESTABLISHING AI T&E REQUIREMENTS

Throughout this study, one of the constant refrains this committee heard from 
speakers was the importance of formulating T&E requirements for AI capabilities 
that reflected the needs of end-users or operators, not only developers or testers.3 
Yet the same speakers acknowledged the difficulty of defining comprehensive T&E 
requirements for software-centric capabilities whose “black box” performance 
under operational conditions could change continually based on the ingestion 
of more and more data and that generate probabilistic or statistically predictable 
behavior rather than deterministic results, and whose performance could change 
significantly with every update to a fielded model.

Most current AI models do not learn by themselves in the field. They are 
trained and tested a priori and deployed. They may be re-trained under operational 
conditions in an operational environment, in which case regression testing is re-
quired. Most AI models are per se deterministic in that, for example, a neural net-
work has weights and thresholds and a method for combining the operations that 
is deterministic (i.e., the model is based on mathematical functions that operate 
in a predictable way). However, the data they ingest under operational conditions 
is stochastic, subject to environmental noise, sensor noise, data dropouts, faulty 
equipment and data collection, and environmental conditions. This “probabilistic” 
behavior is intrinsic to all sensing systems. What is unique to many AI models is 
that their behavior under these data corruption and stochastic behavior scenarios 
are not well understood at the theoretical level and often exhibits what is today 
seen as non-intuitive and brittle failure modes. At the same time, while overall 
model performance is expected to improve over time as more operational data 
are ingested, absorption of more data could also lead to significant reductions in 
performance if the new data are corrupted or poisoned or the AI model is subject 
to other forms of adversarial attacks (see Chapter 5). This would be particularly 
problematic if such attacks are undetected.

The intersection of these two equally important considerations sets AI T&E 
apart from all previous DAF T&E. It leads to a fundamental and persistent challenge 
for AI T&E today: understanding what requirements to test against when evaluating 
standalone AI models, and what requirements to test against once one or more AI 
capabilities are integrated into a DAF system. As the NSCAI noted and as Project 
Maven demonstrated, the former is challenging enough; the latter introduces for-
midable new complexities that will require entirely new approaches to performing 
T&E of AI-enabled weapon systems or decision support systems—not only for AI 

 �3 One speaker noted that it was essential for AI developers to talk to operators or end-users at the 
beginning of a system’s design phase. This would not only allow developers to gain better insights into 
how a given AI-enabled capability would be used operationally, it would also help end-users gain a 
better understanding of the AI T&E process. The committee returns to this point later in this section.
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added to fielded systems, but also for AI that is baked-into new systems beginning 
with the design phase.4 With the current state of technology, AI T&E does not 
align conveniently with either T&E for traditional hardware weapon systems or 
T&E associated with DoD’s software acquisition pathway (although, generally, it 
is a closer fit to the latter than the former).5

This dilemma is a manifestation of the major differences between AI T&E and 
traditional T&E of hardware systems, which assesses and evaluates well-defined 

 �4 In its recommendations for AI T&E future actions, the national security commission on AI final 
report notes that “Progress on a common understanding of TEVV concepts and requirements is criti-
cal for progress in widely used metrics for performance. Significant work is needed to establish what 
appropriate metrics should be used to assess system performance across attributes for responsible AI 
according to applications/context profiles. (Such attributes, for example, include fairness, interpret-
ability, reliability, and robustness.) Future work is needed to develop: (1) definitions, taxonomy, and 
metrics needed to enable agencies to better assess AI performance and vulnerabilities; and (2) metrics 
and benchmarks to assess reliability and intelligibility of produced model explanations. In the near 
term, guidance is needed on: (1) standards for testing intentional and unintentional failure modes; 
(2) exemplar datasets for benchmarking and evaluation, including robustness testing and red team-
ing; and (3) defining characteristics of AI data quality and training environment fidelity (to support 
adequate performance and governance),” p. 645.

The committee encourages the DAF to adopt these recommendations. See National Security 
Commission on Artificial Intelligence (NSCAI), 2021, National Security Commission on Artificial 
Intelligence Final Report, Arlington, VA, https://www.nscai.gov/wp-content/uploads/2021/03/Full-
Report-Digital-1.pdf, p. 137.

 �5 DoD Instruction 5000.89 describes DoD-wide test and evaluation policies, processes, and proce-
dures for urgent capability acquisition, middle tier of acquisition (MTA), major capability acquisition, 
software acquisition, and defense business systems (DBS). See U.S. Office of the Under Secretary of 
Defense for Research and Engineering, 2020, “DoD Instruction 5000.89: Test and Evaluation,” Wash-
ington, DC: Department of Defense, https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/
dodi/500089p.pdf. Defense acquisition of services does not require T&E policy and procedures. DoDI 
5000.89 states that “For non-major defense acquisition programs (MDAPs) and for programs not 
on T&E oversight, these guiding principles should be used as a best practice for an integrated and 
effective T&E strategy,” p. 4. AI T&E is not discussed in DoDD 5000.89; accordingly, as currently 
written this directive provides “guiding principles” for AI T&E, not definitive guidance. See U.S. 
Office of the Under Secretary of Defense for Acquisition and Sustainment, 2020, “DoD Instruc-
tion 5000.02: Operation of the Adaptive Acquisition Framework,” Washington, DC: Department 
of Defense, https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf. This 
Instruction addresses the use of the adaptive acquisition framework (AAF) in software acquisition. 
DoDI 5000.02 states explicitly that “Programs executing the software acquisition pathway are not 
subject to the Joint Capabilities Integration and Development System (JCIDS), and will be handled 
as specifically provided for by the Vice Chairman of the Joint Chiefs of Staff, in consultation with 
Under Secretary of Defense for Acquisition and Sustainment (USD(A&S)) and each service acquisi-
tion executive,” p. 3. It also notes that “Programs executing the software acquisition pathway will not 
be treated as major defense acquisition programs,” p. 3. See U.S. Office of the Under Secretary of 
Defense for Acquisition and Sustainment, 2020, “DoD Instruction 5000.87: Operation of the Software 
Acquisition Pathway,” Washington, DC: Department of Defense, https://www.esd.whs.mil/Portals/54/
Documents/DD/issuances/dodi/500087p.pdf.
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key performance parameters (KPPs) or, for information systems, net-ready KPPs 
(NR-KPP), and other largely static metrics6 driven by the joint capabilities integra-
tion and development system (JCIDS)7 and joint requirements oversight council 
(JROC) and established during system design and development. One of the di-
lemmas the AI test community must grapple with is to understand when more 
traditional KPPs or NR-KPPs should apply, and when more flexibility is required to 
avoid placing undue constraints on AI systems that are designed to meet end-user 
needs under operationally-relevant timelines. In other words, for AI capabilities 
the sponsoring organization must find the appropriate balance between overly 
broad and unnecessarily restrictive performance specifications, as the committee 
discusses in more detail below.

In general, AI requires greater integration between designers, testers, and op-
erators or end-users to enable transparency of approach and outcome, as is com-
mon in the application of a DevSecOps process (see Recommendation 4-2). The 
differences between the two approaches need to be acknowledged in the near term. 
Still, all short-term solutions will continue to evolve over time through an itera-
tive, interactive process as air force end-users and personnel within responsible 
test organizations gain more experience with writing AI-centric T&E require-
ments and with AI T&E processes and practices and as AI T&E becomes more 
automated and test results become more explainable. The committee echoes the 
NSCAI’s recommendation to the military services to “establish a TEVV framework 
and culture that integrates testing as a continuous part of requirements specifica-
tion, development, deployment, training, and maintenance and includes run-time 
monitoring of operational behavior.”8 Section 255 of the FY2020 National Defense 
Authorization Act (NDAA) established a “shift left” for software that requires T&E 
be incorporated into the development life cycle of the software, at minimum. This 
policy would naturally extend to AI T&E, which will then need to go further to 
include the continuous T&E necessary for AI.

Conclusion 4-1: Compared to traditional T&E, AI T&E requires radically deeper 
continuous technical integration among designers, testers, and operators or 
end-users.

 �6 Such as critical technical parameters (CTP), critical intelligence parameters (CIP), key system at-
tributes (KSA), interoperability requirements, and cybersecurity requirements. KPPs/NR-KPPs will 
still exist for AI-enabled systems, particularly in areas such as the safety and security of AI-enabled 
safety-critical systems.

 �7 For traditional hardware systems, the sponsoring service or agency enters the JCIDS process with 
a capabilities-based analysis (CBA), Doctrine, Organization, Training, materiel, Leadership, Personnel, 
Facilities, Policy (DOTmLPF-P) analysis, other studies or analyses, or transition of rapidly fielded 
capability solutions.

 �8 NSCAI, 2021, National Security Commission on Artificial Intelligence Final Report, Arlington, VA, 
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf, p. 384.
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Treating requirements for AI capabilities in the same manner as those for tra-
ditional hardware systems is likely to lead to unnecessary delays in development, 
acquisition, fielding, and sustainment.9 As AI is a software capability, it is essential 
for developers to be as flexible and agile as possible to allow fielding models and 
model updates on operationally-relevant timelines.10 Rather than applying the 
extreme rigor of and adhering to the extended timelines associated with the JCIDS 
requirements process, the preferred approach for AI-enabled capabilities is to link 
proposed solutions—whether provided by commercial vendors or DoD organiza-
tions—to existing JCIDS requirements while being sure to follow a DevSecOps 
or AIOps/MLOps development methodology. This will shorten development and 
fielding timelines considerably.11 One of AI’s most distinguishing features is the 
importance of relying on real and near real time feedback from operational users, 
and ingesting operational data, to make rapid iterative improvements in fielded AI 
models via the agile methodology and CI/CD processes.

Recommendation 4-2: The Department of the Air Force should adopt a more 
flexible approach for acquiring artificial intelligence (AI)-enabled capabili-
ties that whenever possible links proposed solutions to existing joint capa-
bilities integration and development system requirements, and that follows 
a development, security, and operations or AI for information technology 
operations/machine learning operations development methodology.

The DoD Algorithmic Warfare Cross-Functional Team (Project Maven) used 
this approach when soliciting computer vision solutions to meet standing opera-
tional needs: members of the Maven team performed an exhaustive search of JCIDS 
databases to find existing requirements that had identified operational limitations 
and requested solutions that could augment, accelerate, and automate processing, 
exploitation, and dissemination of tactical and medium-altitude UAS full-motion 
video. Once a commercial CV algorithm solution could be linked to an existing 

 �9 Another risk that has not been sufficiently considered when “testing to requirements” in accor-
dance with the JCIDS process, is that AI systems that return better-than-expected testing results could 
be discarded for not meeting specific narrowly defined JCIDS-dictated requirements.

 �10 See for example, W. McHenry and M. Brown, 2022, “The 1960s Had Their Day: Changing DoD’s 
Acquisition Processes and Structures,” Real Clear Defense, December 5, https://www.realcleardefense.
com/articles/2022/12/05/the_1960s_had_their_day_changing_dods_acquisition_processes_and_
structures_868279.html. The authors emphasize the difference between DoD’s linear acquisition 
processes and successful commercial technology programs that rely on cross-functional teams and 
continual user feedback during design, development, fielding, and sustainment.

 �11 DoDI 5000.89 requires a test strategy when using the software acquisition pathway, and notes 
that this pathway “focuses on modern iterative software development techniques such as agile, lean, 
and development security operations, which promise faster delivery of working code to the user. The 
goal of this software acquisition pathway is to achieve continuous integration and continuous delivery 
to the maximum extent possible” (p. 24).
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formal DoD requirement and translated into a request for proposal (RFP), the 
Maven T&E team established testable and verifiable performance measures for that 
algorithm, as described previously in this report.

Members of Project Maven “translated” esoteric T&E metrics into terms that 
were most relevant to operational end-users. Because formal requirements had not 
been established for AI model performance, once the Maven team had completed 
data quality assurance, T&E on each model, integration testing in the Maven 
Integration Lab, and live-fly testing, user acceptance of each trained model and 
follow-on updates to those fielded models, was based primarily on an agreement 
between the Maven team and operational users that the models had demonstrated 
adequate performance under operational conditions (as compared to the baseline 
performance achieved with existing, non-AI systems). Once a minimum viable 
product (MVP) model was fielded, user feedback was instrumental in refining 
model performance through continuous integration and continuous delivery (CI/
CD). This entire process, which was considerably less rigid than the T&E of major 
acquisition program hardware systems, underscored the importance of defining 
future T&E requirements for all AI capabilities and AI-enabled platforms, sensors, 
and tools in ways that reflect consensus between developers and end-users at every 
stage of the AI life cycle. The JAIC T&E division (now under the OSD CDAO) 
refined Maven’s processes, procedures, and practices and is publishing CDAO AI 
T&E playbooks and providing AI T&E frameworks to OSD DOT&E that the DAF 
should consider adopting.12

This less constrained approach to AI requirements formulation introduces 
risks. It creates the potential for overly broad performance specifications and dis-
parities between contract language and end-user requirements. However, such risks 
can be mitigated substantially through a continuous dialogue between developers 
(DevSecOps or AIOps/MLOps teams), end-users, designated acquisition officials, 
and the responsible DAF test organization. Such a dialogue will help developers 
and testers formulate T&E metrics and performance measures that best match the 
end-users’ operational needs. While end-user involvement and feedback are valu-
able during the T&E of all systems, it is especially important during every stage 
of the AI life cycle due to general unfamiliarity with AI capabilities, as well as AI’s 
unique self-learning characteristics compared to all other traditional DAF hardware 
systems and software capabilities.

The National Institute of Standards and Technology’s (NIST’s) AI Risk Man-
agement Framework (RMF) lists representative AI actors across the AI life cycle.13 

 �12 These include frameworks for T&E of AI-enabled systems (AEIS); operational testing of AEIS; 
human-system integration (HSI); system integration; responsible AI (RAI); and AI assurance.

 �13 National Institute of Standards and Technology, Department of Commerce, 2023, Artificial 
Intelligence Risk Management Framework (AI RMF 1.0), NIST AI 100-1, Washington, DC, https://
nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf. Also, see the accompanying (draft) NIST AI RMF 
Playbook, available at https://pages.nist.gov/AIRMF.
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This list of activities and representative AI actors in each stage of the AI pipeline 
underscores the role that operators or end-users should play in the AI life cycle, 
most importantly beginning with plan and design. Which, in coordination with 
testers, domain experts, AI designers, product managers, and others, is intended 
to lead to the formulation of AI T&E metrics and performance measures. The 
level and frequency of end-user or operator involvement in this process is another 
feature that distinguishes AI T&E from most traditional DAF hardware testing 
practices.

Addressing this foundational “how much?” question should be one of the 
DAF AI T&E champion’s initial top priorities, guided by discussions with the 
OSD CDAO, DOT&E, DASD(DT&E), AF CDAO, AFMC DTO, and other relevant 
DAF and joint AI test organizations and agencies. The answer to this question will 
always be context dependent, reflecting a combination of myriad factors such as 
end-user requirements, degree of urgency, technology and human readiness levels 
(TRLs/HRLs), assessed risks of action and inaction, scope, scale, and differences 
between an original fielded model and subsequent model version updates. It will 
also depend on the level of risks that end-users are willing to accept based on 
their operational imperatives. Yet this requires the test-responsible organization 
to communicate as transparently as possible to end-users measured and expected 
performance capabilities, system limitations, and possible failure modes of AI-
enabled systems that users intend to accept for fielding.14

As the NSCAI recommended in its final report, one of the DAF’s critical first 
steps, led by the AI T&E champion in coordination with the OSD CDAO, OSD 
DOT&E, DASD(DT&E), and DAF CDAO, should be to establish “a process for 
writing testable and verifiable AI requirement specifications that characterize real-
istic operational performance,” and to provide “testing methodologies and metrics 
that enable evaluation of these requirements—including principles of ethical and 
responsible AI, trustworthiness, robustness, and adversarial resilience.”15

As noted above, the iterative and interactive dialogue between end-users, tes-
ters, and the broader AI community will help operators and testers agree on request 
for proposal/request for information (RFP/RFI) and contract language, help end-
users understand how AI performance will be assessed by testers, and help testers 
develop appropriate test metrics and performance measures. As noted in the Project 
Maven case study, other AI T&E best practices include setting aside sufficient 
representative data for training, validation, or assessment, and test; building T&E 

 �14 See, for example, M.A. Flournoy, A. Haines, and G. Chefitz, 2020, Building Trust Through Testing: 
Adapting DOE’s Test & Evaluation, Validation & Verification (TEVV) Enterprise for Machine Learn-
ing Systems, Including Deep Learning Systems, Washington, DC: Center for Security and Emerging 
Technology (CSET). https://cset.georgetown.edu/wp-content/uploads/Building-Trust-Through-
Testing.pdf.

 �15 NSCAI, 2021, National Security Commission on Artificial Intelligence Final Report, Arlington, VA, 
https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf, p. 384.
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harnesses; evaluating fielded models as part of ongoing operational assessments; 
defining model boundary conditions and assessing AI failure modes; and develop-
ing T&E processes for each subsequent update to fielded models through normal 
CI/CD processes. One of AI’s most distinguishing features is the importance of 
relying on real- and near-real-time feedback from operational users and ingest-
ing operational data to make rapid iterative improvements in fielded AI models 
via agile principles and CI/CD processes. This includes integrating test personnel 
with operational units when feasible. The DAF should consider training a subset 
of the DAF-wide test cadre to be integrated into operational units to assist with 
onsite AI T&E.

When the committee refers to requirements, it includes the need for DAF-
wide investments in enabling capabilities that support AI T&E at enterprise scale. 
Because of AI’s unique characteristics and the uncertainties associated with AI 
performance in operational environments, the committee recommends that the 
DAF prioritize investments for digital modernization of the DAF test enterprise and 
for implementing an enterprise-level T&E architecture, enabled to the maximum 
extent possible by the OSD CDAO,16 OSD DOT&E, OSD DASD(DT&E), the test 
resource management center (TRMC), and DAF CDAO. This should include major 
and near-term investments in modern AI stacks across AFTC, AFOTEC, and US-
AFWC (to include access to enterprise cloud-as-a-service and platform-as-a-service 
[PaaS] capabilities); modeling and simulation; the Virtual Test and Training Center 
(VTTC) at Nellis AFB; the joint simulation environment (JSE);17 the Air Force 
Digital Test Environment; the 96th Operations Group’s new initiative to establish 

 �16 Through its National AI T&E Infrastructure Capability (NAITIC) study, OSD CDAO is coordi-
nating with TRMC, DTE&A, and DOT&E to answer the following basic question: is DoD properly 
resourced to adequately test and evaluate AI-enabled capabilities? This study is designed to systemati-
cally explore supply and demand for T&E of AI capabilities and identify gaps in DoD infrastructure. 
The study’s primary conclusion is that there is no evidence-based analysis of DoD AI T&E infrastruc-
ture gaps tied to demand (programs with AI capabilities) or supply (extant T&E infrastructure). In the 
near term, the DAF can take advantage of CDAO’s test harnesses (available through the CDAO “test 
and evaluation factory”), T&E bulk purchase agreements (BPA), and the red teaming handbook. 
The CDAO’s joint AI test infrastructure capability (JATIC) is an interoperable set of state-of-the-art 
software for rigorous AI model and algorithm test and evaluation. The CDAO AI Assurance division 
also makes available actual test products such as test and evaluation master plans (TEMP), to include 
one for an autonomous system; red team assessments; algorithmic integrity assessments; and human-
system integration type assessments.

 �17 The joint simulation environment or JSE is a scalable, expandable, high-fidelity, government-
owned non-proprietary modeling and simulation environment. While designed originally for testing 
fifth-generation aircraft in a simulation environment, its use is expanding to fulfill other integrated 
testing requirements.
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a digital synthetic version of the air and ground ranges in and around Eglin AFB; 
digital twins;18 and live-virtual-constructive (LVC) integration.

As more AI-enabled weapon systems, especially AI-enabled autonomous 
weapon systems, are fielded across the Air Force and Space Force, there will be 
tremendous value in providing dedicated T&E “sandbox environments.” Such 
environments will be vital in supporting T&E for systems in more operationally-
realistic settings and in providing more insights into potential AI system limitations 
and failure modes while also allowing the appropriate assessment of individual 
system risks and the risks associated with integration into a system-of-systems.

Digital modernization includes building and sustaining data management 
pipelines (DMP) for all AI projects. Every DAF AI project requires building a 
project-specific information architecture and establishing processes and procedures 
to generate training-quality data (TQD) essential to building and testing high-
performance AI models. Additionally, the DAF AI T&E champion, in coordination 
with DAF system program offices (SPOs) and PEOs, should provide standardized 
contract options to address the need for TQD and machine-readable data, along 
with options for intellectual property (IP) protections and ownership of data rights 
and licenses for both commercial vendors and government entities.19 Finally, one 
of the primary duties of the DAF AI T&E champion would be to formally adopt 
and promulgate DAF-wide guidance, such as the February 2022 DAF-MIT AI Ac-
celerator Artificial Intelligence Acquisition Guidebook.20

As noted previously, the committee expects DAF leaders to substantially under-
estimate the level of investments required to implement digital modernization of 

 �18 While there are many definitions, a digital twin is generally defined as a digital represen-
tation of a physical object or system that can be used to simulate its real-world behavior and 
characteristics. Cortez et al. (2022) define a digital twin as a “digital representation of a Single 
Board Computer (SBC) and/or components representing a functionally correct, predictable and 
reproducible representation of that board or system at the appropriate level of fidelity to perform 
software verification, performance analysis and software validation tasks.” N.F. Cortez, E. Williams, 
A. House, and J. Ramirez, 2022, “Virtualization: Unlocking Software Modularity of Embedded 
Systems,” 2022 DoD Weapon Systems Software Summit, Orlando, FL: Orange County Convention 
Center, December 13, https://repo1.dso.mil/dsawg-devsecops/team-8/team8_artifacts/-/blob/master/
Virtualization_-_Unlocking_Software_Modularity_of_Embedded_Systems_v2.pdf.

 �19 See, for example, A. Bowne and R. Holte, 2022, “Acquiring Machine-Readable Data for an 
AI-Ready Department of the Air Force,” The JAG Reporter, November 29, https://www.jagreporter.
af.mil/Post/Article-View-Post/Article/3216144/acquiring-machine-readable-data. In addition to de-
scribing the importance of TQD and machine-readable data, the authors also address IP and data 
rights as part of the contracting and acquisition process for AI projects. See also Department of 
Defense, 2020, DoD Data Strategy, September 20, Washington, DC, https://media.defense.gov/2020/
Oct/08/2002514180/-1/-1/0/DoD-Data-Strategy.pdf.

 �20 Department of the Air Force, 2022, Artificial Intelligence Acquisition Guidebook, Cambridge, 
MA: MIT, https://aia.mit.edu/wp-content/uploads/2022/02/AI-Acquisition-Guidebook_CAO- 
14-Feb-2022.pdf.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

T e s t  a n d  E v a l u a t i o n  C h a l l e n g e s  i n  AI  - E n a b l e d  S y s t e m s 90

the DAF test enterprise and establish modern AI data management best practices. 
Therefore, in coordination with OSD CDAO, the committee recommends that the 
DAF immediately initiate a comprehensive analysis of the resources required to 
carry out digital modernization across the Air and Space Forces and resource those 
requirements appropriately in future DAF budgets.

Over the longer term, when feasible and it makes sense operationally, the DAF 
should strive to integrate AI into programs of record, via the DAF’s SPOs and 
PMOs, and program executive officers (PEO), rather than “bolting on” AI to a 
system after fielding, as is the case today.21 In these cases, AI T&E can be integrated 
into the host weapon system test and evaluation master plan (TEMP). However, 
DAF responsible test organizations should be wary of allowing AI T&E to be “held 
hostage” when there are excessive delays in the parent weapon system test sched-
ule during DT, OT, IOT&E, FOT&E, or live-fly test and evaluation (LFT&E). One 
speaker provided an example of a delay in flight testing that caused an undue delay 
in the planned rapid T&E of an AI capability integrated into the system under test. 
Another speaker cited an example of overly-restrictive conditions directed by a 
program of record owner on the ability to update an integrated AI capability hosted 
on a hardware platform. As a result, large portions of T&E can be accomplished on 
AI capabilities before they need to be tested as part of a fully hardware-software 
integrated weapon system. This departure from established hardware test practices 
suggests the need for a DAF-wide test enterprise cultural shift, which in turn de-
pends on providing more education and training on AI T&E and agile principles. 
The committee addresses this in more detail in the following Culture Change and 
Workforce Development section.

Recommendation 4-3: To the maximum extent possible and where it makes 
sense operationally, the Department of the Air Force (DAF) should integrate 
artificial intelligence (AI) requirements into programs of record, via the DAF’s 
system program offices and program executive officers, and integrate AI testing 
and evaluation (T&E) into the host weapon system T&E master plan.

Even with the rapid development of new AI capabilities and the maturation of 
earlier AI-enabled systems that provide opportunities for rapid updates to fielded 
models, many AI systems today remain brittle. Apart from the difficulties of field-
ing AI-enabled capabilities that perform as well in the operational environment as 
they do on the laboratory bench, AI will be subject to corruption and adversarial 
attacks in the form of model or algorithm denial and deception, data poisoning, 
evasion attacks, and cyberattacks among others. Adversarial attacks will occur at 

 �21 One notable exception is the Air Force Ground-Based Strategic Deterrence “Sentinel” program, 
which has incorporated digital modernization principles, to include the use of digital twins, since 
program inception.
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the model level, system level, during operational deployment, and throughout the 
entire AI life cycle and data management pipeline. As such, the DAF must estab-
lish dedicated independent AI red teams that are considered as fully integrated 
elements of AI T&E. These teams can help develop and update defenses against 
adversarial attacks while also supporting the development of offensive adversarial 
attack techniques—much in the same way that “red air” has played an indispensable 
role in improving the effectiveness of DAF over the past 40 years, or in how cyber 
“white hat” and red teams have been honing the skills of the DAF cyber defenders 
and attackers over the past decade.

Red teams represent a critical component of AI test design and the overarch-
ing requirements process. These teams must be capable of emulating current and 
future peer competitor capabilities and performance and should be integrated into 
the entire AI life cycle. Furthermore, the committee underscores the importance of 
not viewing AI red teams as entities that are completely separate from the AI T&E 
enterprise.22 Instead, they should be integral to AI T&E, although independent, and 
focused on operational performance and mission resilience in the face of known and 
unknown—but expected—adversarial attacks, beginning with the presumption of 
attack at every stage of the AI life cycle, including cyberattacks, data manipulation, 
and data corruption and poisoning (as discussed in the next chapter). This includes 
the importance of instrumenting fielded systems to inform end-users of a potential 
adversarial attack or unexpected degradation in model performance (which may 
indicate an adversarial attack). Similar to OSD DOT&E’s use of cyber red teams, 
the committee recommends that DAF AI red teams fall under the direction of the 
DAF AI champion (or designated AI T&E lead).

Establishing a DAF activity focused on AI-based systems red-teaming would 
provide trust and justified confidence in the face of potential adversarial attacks that 
present unique challenges for which the DAF is currently unprepared. To ensure 
that AI-enabled systems are resilient during development, training, deployment, 
and retraining or updating, the committee recommends the DAF develop T&E 
approaches integrated with red-team findings that reflect the range of adversarial 
activity anticipated during all phases of the AI life cycle.

Recommendation 4-4: The Department of the Air Force should establish an 
activity focused on robust artificial intelligence–based systems red-teaming, 
implement testing against threats the red-teaming uncovers, and coordinate 
its investments to explicitly address the findings of red-team activities and 
to augment research in the private sector.

 �22 OSD DOT&E has relied on DOT&E-sponsored and service-led cyber red teams for the past several 
years. See for example, DOT&E, 2022, “Cyber Assessment Program,” FY 2021 Annual Report, https://
www.dote.osd.mil/Portals/97/pub/reports/FY2021/other/2021cap.pdf?ver=597qqovFSFg_PajZvaLu_ 
w%3D%3D.
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Finally, the DAF AI T&E champion must address how to respond to requests 
for changes to fielded AI models beyond the process described earlier, which ac-
counts for regular, periodic updates through CI/CD processes. For all designated 
DoD-wide weapon systems, existing urgent operational needs (UON)/joint urgent 
operational needs (JUON)/joint emergent operational needs (JEON) processes are 
used for capability requirements identified as impacting ongoing or anticipated 
contingency operations. For example, for air force aircraft and related systems, 
the normal peacetime change process begins with unit-level requests (such as an 
operational change request [OCR], or Form 1067, which is used to document the 
submission, review, and approval of requirements for modifications). For fielded 
electronic warfare (EW) systems, units can seek emergency reprogramming up-
dates through the EW integrated reprogramming (EWIR) process. For cyber sys-
tems, the AFCYBER incident response plan can trigger requirements for changes 
to fielded capabilities. DAF leaders should consider the advantages and limitations 
of all these different processes—as well as those in other DoD organizations and 
private sector companies—when establishing new processes and procedures that 
govern requests for urgent updates to fielded AI models. These processes and pro-
cedures must account for data requirements, model retraining, and the extent of 
additional T&E required.23

Data Management Requirements

Despite the focus on digital transformation and data over the past 5 years, the 
DAF is not yet an AI-ready force. The DAF does not yet treat its huge capacity for 
data collection in its internal business operations and its external missions in ways 
optimized for AI-based processing and exploitation. With few exceptions, data are 
not treated as a “first-class citizen.” It is not sufficiently tracked, managed, curated, 
protected, or stored in formats that make it readily accessible by AI developers 
and testers, and AI models. The DAF has not established policies and practices 
for building and sustaining the data-management pipelines crucial to modern AI 
development. The DAF does not have the modeling and simulation architectures, 
synthetic environments, digital twins, or computational power needed to support 
developing, testing and sustaining advanced AI-enabled systems. These deficiencies, 

23 As noted by the 96 OG/CC, because Eglin AFB is a designated Major Range and Test Facility 
Base (MRTFB) and is funded through a “pay to play” model (as directed by the NDAA), DAF leaders 
must address the disconnect between the timelines inherent in this type of funding model, and the 
certainty of needing immediate funding for high-priority emerging AI T&E requirements. The DAF 
AI T&E champion will also need to assess the impacts of traditional contractually mandated response 
timelines when responding to urgent and emerging AI T&E requirements. �
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if not redressed, will adversely affect all aspects of AI-based systems development, 
including T&E activities.

Building off the 2020 DoD Data Strategy, the DAF should update its data vi-
sion and strategy to explicitly recognize data as a “first-class citizen.” This strategy 
and accompanying implementation plan should include policies and establishing 
processes to track, manage, curate, protect, and store data in ways optimized for 
AI developers and testers and that account for possible sources of bias in data. The 
DAF needs to provide guidance on building and sustaining DMPs, to include high-
lighting government and private sector best practices for collecting and generating 
AI-ready data. Data at all levels of classification should be stored in the purview of 
a zero-trust network architecture, particularly accounting for data privacy when 
systems are trained on sensitive data.

The committee recommends storing and protecting data at all levels of clas-
sification within the purview of zero-trust network architecture and accounting 
for data privacy when systems are trained on sensitive data.

Recommendation 4-5: Building off the 2020 DoD Data Strategy, the Depart-
ment of the Air Force should update and promulgate its data vision, strategy, 
and metrics-based implementation plan to explicitly recognize data as a 
“first-class citizen.” These documents should include plans for the following:

•	� Prioritizing investments in computation and storage resources and 
infrastructure to support artificial intelligence (AI) development

•	� Widely expanding data collection and curation for the entire range 
of AI planning and scoping, designing, training, evaluation, and feed-
back activities

•	 Investing in data simulators for AI training and testing
•	� Adapting approaches and architectures developed in private industry 

for AI-based systems

4.4 CULTURE CHANGE AND WORKFORCE DEVELOPMENT

The concept of culture is much easier to experience viscerally than it is to define 
or even describe adequately. Yet culture is very real. It materially affects an organiza-
tion or community’s health and long-term performance. In general, culture refers to 
a set of shared behaviors, beliefs, and values. It is formed over time, resulting from the 
combined actions and words of all the people within an organization or community. 
While an organization or community’s leaders play a paramount role in establishing 
a particular culture through the promulgation of their vision, mission, and value 
statements; their leadership philosophy and style; the way they treat members of the 
organization; the norms they establish and enforce; and how they incentivize good 
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and correct bad behaviors, organizational culture can only be formed, sustained, or 
changed by the collective behaviors of the entire organization or community over time.

While establishing and sustaining a particular culture is difficult, it is even 
harder to change an ingrained culture formed over many decades that is viewed 
as unique, elite, and highly successful. Those three qualities describe the culture of 
today’s DAF test enterprise.

It is hard to argue with past successes. While the committee cannot offer a 
“recipe” for culture change, it nonetheless believes that culture changes are neces-
sary to ensure AI T&E’s best practices, processes, and procedures are adopted as 
rapidly as possible across the DAF. As noted throughout this report, despite many 
commonalities between traditional T&E and AI T&E, there are also notable differ-
ences. In particular, these include the lack of a clear delineation between DT and OT 
for AI capabilities; the importance of and reliance on agile principles and adaptive 
T&E principles (AIOps, MLOps, or DevSecOps) instead of waterfall development 
for AI systems; the centrality of data and high-end computing; the potential for 
a continuous data-based self-learning capability; the importance and challenges 
of mission- and domain-specific adaptation for AI-enabled systems; probabilistic 
or statistically predictable behavior rather than deterministic results; the effects 
and risks of dedicated adversarial attacks against AI models, at every phase from 
initial algorithm training through model deployment and sustainment; the desire 
for AI explainability and auditability; and the need for continuous integration and 
continuous delivery (CI and CD) for fielded AI-enabled systems.

The committee asserts that the magnitude of these differences warrants devel-
oping a new culture, one that combines the best of the extant test culture with a 
new and more risk-tolerant, agile, and adaptive mindset and approach to AI T&E. 
This sort of culture change will be instrumental in accelerating the adoption and 
integration of AI across the DAF at speed and at scale.

There are inherent dangers in rushing to change the legacy DAF test culture. 
Attempting to drive systemic changes across the test community without fully 
understanding the nature and magnitude of the change required or failing to com-
municate the rationale for change throughout the entire community can cause 
irreversible harm to the existing culture while simultaneously preventing leaders 
and organizations from forging and sustaining a culture that can endure for the 
foreseeable future. For these reasons, it is critical to identify specific aspects of 
the DAF test enterprise culture that need to be changed and why. Likewise, it is 
equally important to understand what elements of the existing DAF test culture 
should be preserved and how. These are not trivial steps. They will require active 
participation and buy-in from stakeholders and experts across the DAF test en-
terprise. Initial problem-framing must also include the participation of experts in 
AI and other emerging technologies from across the DAF, the federal government, 
and industry and academia—especially those with extensive AI and software T&E 
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experience, to include recent experiences with leading-edge T&E techniques and 
adversarial attacks. In essence, DAF leaders should seek to maintain the “best of 
both worlds”: combining elements of today’s test culture with new elements that 
the test community agrees will most likely lead to T&E success in a future environ-
ment characterized by software-defined warfare.

Culture change begins at the top. Changing any culture depends on setting and 
adhering to a coherent vision that aligns strategies, actions, incentives, and metrics. 
The committee recommends that DAF leaders communicate immediately to the 
Air and Space Forces both the importance of AI T&E and their commitment to 
establishing a culture unique to AI T&E through the right combination of people, 
processes, and technology. At the same time, they should emphasize the value of 
preserving the successful elements of the current DAF test community culture. The 
designated DAF AI T&E champion should be equally committed to long-term cul-
ture change and should be responsible for recommending changes to DAF leaders 
that are designed to help forge a new AI T&E culture. The champion should also 
be accountable for following through on the decisions of DAF leaders.

Workforce development is a critical component of the DAF-wide plan to in-
troduce and sustain new AI T&E capabilities culture. In broad terms, workforce 
development comprises training, education, certification, and talent management. 
Because AI remains relatively new, these elements will, of necessity, include both 
general and test-specific AI training, education, and certification. Similarly, cur-
rent DAF initiatives and programs that provide AI education and training—led 
primarily at present by the Department of the Air Force-MIT AI Accelerator (AIA) 
in coordination with Air University and OSD CDAO—should ensure that all levels 
of personnel have the appropriate training, from general officers and senior civilian 
executives to entry-level personnel.24 CDAO now also has AI education initiatives 
with JHUAPL and Naval Postgraduate School (NPS)/Stanford. This includes es-
tablishing requirements for continuing education and training (CET) on AI and 
AI T&E-specific topics. It will be equally important for the DAF AI T&E champion 
to advocate for centralized career-long tracking and management of personnel 
with specific AI and AI T&E skills, similar to other DAF efforts to manage myriad 
career fields (appropriate analogies include the cyber, space, and intelligence career 
fields, which recognize baseline training and certification along with additional 
identification of specialized training and certifications for specific positions held 
throughout a career).

The committee recommends that as opposed to general AI training, which 
can be accomplished by various DoD organizations, core AI T&E training should 
fall under the AFTC. Since few DAF organizations and agencies presently have the 

 �24 For example, the DAF-MIT AI Accelerator and the MIT Sloan School of Management host a 
3-day AI for National Security Leaders (AI4NSL) education program in Cambridge, Massachusetts.
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requisite level of AI and T&E expertise, the committee recommends that the DAF 
rely on UARCs and federally funded research and development centers (FFRDCs) 
to run AI T&E training, under the oversight of the DAF AI T&E champion and 
supported by AFOTEC, the USAFWC, Air Force Institute of Technology (AFIT), 
AFRL, and AIA.25 Furthermore, the AFTC AI T&E curriculum should be developed 
by personnel with substantial AI and AI T&E experience, not only from within the 
DAF but also, as appropriate, from industry and academia. The committee expects 
the test community will achieve better results this way rather than relying primarily 
on retraining AFTC, AFOTEC, or USAFWC test personnel on AI principles and AI 
T&E processes, practices, and procedures.26

The committee recommends that the DAF assess the utility of using the law 
school analogy for building a cadre of AI T&E personnel across the test enterprise. 
Just as all lawyers receive common core education on the law followed by exten-
sive additional, specialized training for their planned area of practice (tort law, 
criminal law, contract law, and so on), DAF AI T&E personnel can participate in 
a common core test curriculum at the AFTC, with AI T&E-specific training (and 
training on other emerging technologies) provided either within the AFTC or at 
other designated DAF or joint organizations, such as the DAF AIA, AFIT, AFRL, 
or the Defense Acquisition University (DAU). Moreover, the importance of con-
tinuing education and training (CET) has its own analogy in the legal profession: 
as mandated by law, lawyers require so many continuing education units (CEU) 
annually. The committee suggests that the importance of CET is even greater for 
AI, considering the exponential rate of technological change.

As noted earlier in the summary, there must be sufficient flexibility at the 
operational and tactical levels to accommodate agile and CI/CD principles and 
continuous T&E. This may require deliberate placement of AI T&E experts within 
operational and training units outside the traditional DAF test community. Some 
of these people may already be test-certified (similar to how test pilots continually 
rotate through operational and training squadrons throughout their careers) and 
only require AI T&E “top-off” training. Others may possess useful skills (a com-
puter science background or previous AI experience, for example) but have not 

 �25 Similar for example to OSD DOT&E’s use of IDA for providing analytic support to DOD’s T&E 
community.

 �26 This expectation accounts for the substantive differences between traditional T&E of hard-
ware systems, and AI T&E. The committee acknowledges the potential utility of a hybrid approach 
that takes advantage of the expertise of both highly experienced “traditional” test personnel, 
and people with extensive experience in the development, testing, fielding, and sustainment of 
AI-enabled systems.
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received training at the AFTC and thus should receive tailored AI T&E training 
aligned to their unit responsibilities.27

Whenever feasible, the DAF should take advantage of existing AI-related edu-
cation and training initiatives. For instance, in response to congressional direction, 
in 2020, the JAIC, now CDAO, developed the 2020 Department of Defense Artificial 
Intelligence Education Strategy.28 In crafting the AI education strategy and imple-
mentation plan, the JAIC segmented the entire DoD workforce into six AI arche-
types: specifically, personnel grouped by similar AI education and training needs.29 
The committee recommends that the DAF continue to use these same archetypes 
in developing AI and AI T&E-specific training and education. The JAIC initiated 
an AI education pilot program in October 2020. The CDAO, in coordination with 
the DAF AIA, now offers a variety of AI training programs and courses for person-
nel across DoD. The AIA has compiled a list of AI educational resources for DoD 
personnel, which can be accessed with a common access card (CAC).30 Similarly, 
the 96th Operations Group Commander briefed the committee that the 96th is 
developing AI T&E educational programs for the test community to address the 
implications of lethal autonomous weapon systems (LAWS), human factors, and 
human-systems integration.

The committee also recommends that the DAF AI T&E champion consider 
using the DAU’s approach to modernizing the DoD T&E acquisition workforce as 
a guidepost for developing DAF-wide AI T&E education, training, and certification. 
DAU is pivoting from a “one-size-fits-all” certification framework to a compo-
nent and workforce-centric, tailorable, continuous learning construct.31 The DoD 

 �27 The committee suggests the AI T&E champion, in coordination with the AFTC, AFOTEC, 
USAFWC, DAF CDAO, AFMC Digital Transformation Office (DTO), and DAF Chief Experience 
Officer (CXO) assess the value of placing “digital natives” at the unit level. Analogous to the practice, 
for example, of placing unit intelligence officers within DAF squadrons.

 �28 Section 256 of the National Defense Authorization Act (NDAA) for Fiscal Year 2020 directed 
the Secretary of Defense to “develop a strategy for educating service members in relevant occupa-
tional fields on matters related to artificial intelligence.” It also directed the secretary to develop an 
implementation plan. (DoD Joint AI Center, 2020, Department of Defense Artificial Intelligence Edu-
cation Strategy, Washington, DC, https://www.ai.mil/docs/2020_DoD_AI_Training_and_Education_ 
Strategy_and_Infographic_10_27_20.pdf.) See Chief Digital and Artificial Intelligence Office, 2023, 
“Education & Training,” https://www.ai.mil/education_training.html for descriptions of the CDAO’s 
AI training programs.

 �29 As detailed on p. 7 in DoD AI Education Strategy, the six archetypes are Lead AI, Drive AI, 
Create AI, Employ AI, Facilitate AI, and Embed AI. For detailed descriptions of each archetype, see 
Appendixes B–G of the DoD AI Education Strategy.

 �30 C. Del Aguila, 2022, “AI Accelerator Focuses on Education,” Air Force Material Command, https://
www.afmc.af.mil/News/Article-Display/Article/3013236/ai-accelerator-focuses-on-education.

 �31 S. Possehl, 2022, “Test and Evaluation: The Change Is Here Today,” Defense Acquisition Univer-
sity, February 1, https://www.dau.edu/library/defense-atl/blog/Test-and-Evaluation-change-today.
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acquisition force T&E functional area includes members working in developmen-
tal test and evaluation (DT&E), the TRMC, test ranges, and operational test and 
evaluation (OT&E) throughout all phases of the acquisition life cycle. This DAU 
initiative focuses on personnel development, streamlining functional areas, reform-
ing the certification framework, modernizing talent management, and equipping 
acquisition professionals with the tools needed in the digital age. It includes both 
foundational (within 3 years of position assignment) and practitioner (within 
5 years of position assignment) categories.

Moreover, it includes both T&E certification training requirements (basic 
requirements for working in a designated T&E acquisition position) and T&E 
credential development (additional training that will provide job-specific, specialty, 
and point-of-need training for mid- and advanced career jobs and opportunities). 
The initial set of training credentials includes—among others—T&E of AI, T&E of 
autonomous systems, evaluating data, T&E of software, and digital engineering (an 
existing DAU credential). Credentials are intended to be flexible for point-of-need 
applications. They may be required by senior leaders, functional leaders, supervi-
sors, managers, and others.

Finally, for more advanced AI T&E education and training, the committee 
suggests that the DAF AI T&E champion review programs offered by the DAU, Air 
Force Institute of Technology (AFIT), and Air Force Materiel Command (AFMC). 
For example, AFMC’s Air Force Acquisition Instructor Course (AQIC), which is 
viewed as a “Weapons School for the acquisition career field,” includes an entire 
section on traditional T&E and another on emerging technologies. The committee 
expects that AFMC and AQIC will be receptive to providing more advanced educa-
tion and training on AI T&E based on DAF, AFTC, AFOTEC, and USAFWC needs.

Recommendation 4-6: The Department of the Air Force (DAF) should in-
culcate an artificial intelligence (AI) testing and evaluation (T&E) culture 
espoused by DAF leaders and led by the AI T&E champion. In particular, the 
DAF and the DAF AI champion should:

•	� Provide AI education, training, and, where applicable, certifications 
to all personnel, from general officers and senior civilian executives 
to entry-level personnel

•	� Institute career-long tracking and management of personnel with 
specific AI and AI T&E skills

•	 Place core AI T&E training under the Air Force Test Center
•	 Take advantage of existing AI-related education and training initiatives

One of the most important first steps is to survey the entire DAF workforce 
to determine as accurately as possible the current baseline of AI and AI T&E skills 
that exist in the DAF today. The committee heard the resounding message from 
several speakers that such a baseline does not exist—not for general AI skills or 
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even more important for this report, for AI T&E experience. The DAF AI T&E 
champion should coordinate with the Air Force Personnel Center (AFPC) and 
other organizations, such as Air University and the DAF AIA, to develop and 
administer this DAF-wide survey. The DAF AI T&E champion, in coordination 
with the DAF CDAO, 96th Operations Group, AFPC, Air University, and the 
AIA, should consider taking the same approach used when developing the Air 
Force Computer Language Self-Assessment (CLSA) program in 2019. The CLSA, 
administered by Air University, allows DAF active duty, reserve, and civilian per-
sonnel to assess their knowledge and skills in various computer programming 
languages.32 Modifying the CLSA to allow personnel to identify their AI and AI 
test-specific skills and any formal AI training courses and certifications, while not 
perfect, is the best way to accelerate developing a DAF-wide baseline of personnel 
with AI and AI test-specific credentials.

Once a baseline of personnel with AI and AI T&E experience is established, the 
DAF AI T&E champion should coordinate with the applicable organizations and 
agencies to develop a tiered approach to AI implementations and AI T&E-specific 
education, training, and training certification. This includes modifying existing 
programs to reflect the needs of the test enterprise. Currently, Air University and 
the AIA use a useful approach for DAF-wide AI education and training: a three-
tiered system that begins with basic training on digital skills through online courses 
offered by Digital University;33 a second tier focuses on digital skills for basic prac-
titioners and mid-level managers (similar to what exists today for personnel in the 
cyber field); and a third tier comprises in-depth training, up to and including the 
designation of expert status. The DAF should consider using this approach for AI 
T&E training.

The DAF will be unable to build an AI T&E workforce as rapidly as needed to 
meet expected demands over the next 5 years. However, in the near term, the DAF 
AI T&E champion, supported by DAF senior leaders, should use the survey results 
described above to coordinate across the entire DAF to help rebalance the test force 
by shifting people with needed expertise into the test enterprise. At the same time, 
DAF test leaders should solicit volunteers from within the test community to be 
trained specifically on AI T&E. Part of this process includes, with the support of 
AFPC, formally designating with Air Force Specialty Codes (AFSC) and special ex-
perience identifiers (SEI), people who have certain AI and AI T&E skills—similar to 
how various career fields, including the air force test community—identify special 

 �32 The CLSA is a self-paced, online program comprising a series of tests and exercises designed to 
evaluate an individual’s knowledge of programming concepts and techniques. Such a survey could 
also be used to gauge interest in entering the test community as an AI and AI T&E specialist.

 �33 Digital University is a joint venture started between the Air Force and Space Force, and is available 
to members of DoD. It provides access to Silicon Valley-accredited technology training and fosters a 
community of learners. It includes coding, data science, and product management training.
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skill sets today. Once the DAF embarks on this path, it will be equally important 
to continue to track these skills throughout a person’s career. Given the dearth of 
AI T&E expertise in the DAF today, the Air Force and Space Force can ill-afford 
to place personnel with these skills in positions unrelated to AI and AI T&E (with 
normal exceptions granted for career development at more senior levels in the of-
ficer, enlisted, and civilian ranks).

Recruiting and retaining AI expertise remains one of DoD’s biggest challenges. 
While this is a multifaceted problem with no single solution, the DAF should take 
advantage of numerous extant DoD-wide initiatives to find, recruit, and retain 
the nation’s best AI talent. Likewise, the DAF can take advantage of lessons from the 
standup of U.S. Cyber Command to ensure that military personnel, once trained, 
are tracked throughout their careers (as noted above) and to the maximum extent 
feasible retained in AI and AI T&E-related positions. Other creative ideas could 
include hiring contractors to work within DAF T&E facilities as AI T&E subject 
matter experts (SME); offering scholarship funds to undergraduate or graduate AI 
(or related) majors, with the caveat that the individual would serve for a designated 
period after graduation;34 reviewing the Science, Mathematics, and Research for 
Transformation (SMART) Scholarship-for-Service Program to ensure the appro-
priate emphasis on soliciting undergraduates for AI T&E; and reviewing the DAF’s 
programs for sponsoring graduate-level AI T&E work for military and civilian 
personnel serving in AI-related positions.

The DAF should also take advantage of Section 605 of the 2019 NDAA to help 
jump-start building an experienced AI T&E workforce.35 This section allows acceler-
ated temporary promotion opportunities for officers with skills in areas designated 
to have a critical shortage of personnel. Section 605 applies as long as the Secretary of 
the Air Force designates AI and AI T&E as areas that are critically short of personnel.

Recommendation 4-7: The Department of the Air Force (DAF) should deter-
mine the current baseline of artificial intelligence (AI) and AI testing and eval-
uation (T&E) skills across the DAF, develop and maintain a tiered approach 

 �34 The “National Security Commission on AI Final Report” includes several recommendations 
along these lines, to include the establish a new digital service academy and civilian national reserve 
to grow tech talent. See NSCAI, 2021, National Security Commission on Artificial Intelligence Final 
Report, Arlington, VA, https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.
pdf. The FY2023 National Defense Authorization Act contains provisions authorizing DoD to estab-
lish a cyber and digital service academy. As proposed, the academy will provide scholarships for up 
to 5 years, in exchange for equivalent years of service in a civilian DoD position focused on digital 
technology and cybersecurity. Over time, the committee expects that more computer science and AI 
degree-granting programs will increase the emphasis on AI TEVV, perhaps even including TEVV as 
a specific subfield of study.

 �35 U.S. Congress, 2018, “John S. McCain National Defense Authorization Act for Fiscal Year 2019,” 
H.R. 5515, 115th Congress (2017–2018), https://www.congress.gov/bill/115th-congress/house-bill/5515.
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to AI and AI T&E-specific education and training, rebalance the test force by 
shifting people with needed expertise into the test enterprise, and consider 
placing personnel with AI T&E expertise into operational units.

4.5 SUMMARY OF IMPLICATIONS OF FUTURE AI FOR DAF T&E

Even as the DAF addresses its current needs and opportunities, it must evaluate 
emerging AI trends and their likely implications for T&E. Based on trends that the 
committee sees today, it has identified areas that will likely have significant impli-
cations for DAF AI-based systems and the T&E of these future systems. However, 
given the pace of AI progress, it is difficult to predict with precision which AI ad-
vances will be most impactful for Air Force applications. Therefore, the committee 
recommends that the DAF pursue a strategy that puts procedures and mechanisms 
in place to continually track emerging AI trends and investigate T&E implications.

4.6 RECOMMENDATION TIMELINES

This chapter makes numerous recommendations about actions the DAF should 
take concerning AI T&E. While each recommendation is important, the time 
horizon associated with the recommendations varies greatly. Therefore, for ease 
of prioritization, this section groups the recommendations into three groups: rec-
ommendations that could be addressed immediately, in the mid-term (3–5 years), 
and over the long term (over 5 years). These time frames are not hard delineations 
nor meant to be definitive. They may prove to be overly conservative or overly 
aggressive.

Action on several recommendations can be taken immediately. Appointing 
a DAF AI T&E champion (Recommendation 4-1), placing core AI T&E training 
under the AFTC (bullet 3 of Recommendation 4-6), and committing to establishing 
independent red teams (Recommendation 4-4) can all be implemented quickly.

In the 3- to 5-year range, many more recommendations can be implemented. 
This includes adopting an AIOps and MLOps approach for AI-enabled capabili-
ties (Recommendation 4-2) and integrating AI requirements into the program of 
record (Recommendation 4-3). This would also be the timeframe where the DAF-
widevision and strategy for data would be updated and promulgated (Recom-
mendation 4-5), and the AI education parts of Recommendation 4-6 would be 
implemented. Having established the current baseline of AI and AI T&E skills 
across the DAF, this would also be the time frame where the DAF should develop 
a tiered approach to AI and AI T&E education and rebalance the test force by shift-
ing people with needed expertise into the test enterprise (Recommendation 4-7).

Beyond a 5-year window, coordinating investments to explicitly address the 
findings of red-team activities (Recommendation 4-4) and inculcating an AI T&E 
culture (Recommendation 4-6) will be key.
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5
AI Technical Risks Under 

Operational Conditions

This chapter will consider the risks of incorporating artificial intelligence (AI) 
within Department of Defense (DoD) operational systems. These AI-enabled sys-
tems have several realistic threats, some based on adversarial AI and others based 
on the risk in deploying the AI-enabled system in an operational environment. The 
employment of AI-enabled systems can have significant benefits in augmenting 
the capabilities of the warfighter, but there are other risks inherent in the use of 
AI-enabled systems that must be considered. In particular, this chapter answers the 
second of the committee’s three primary tasks, “consider examples of AI corruption 
under operational conditions and against malicious cyberattacks.”

5.1 INTRODUCTION

An AI-enabled system includes technical risks that must be considered during 
the test and evaluation (T&E) of any system that incorporates AI elements. The 
most likely risks to AI-enabled systems are enabled through cyber access to the 
AI components, be they the training or operational data, the model, the software 
implementing the component, or the output of the AI-enabled system. Thus, the 
first and most important risk is exploiting vulnerabilities in the system to access, 
manipulate, or deny the elements of the AI component. Therefore, during T&E, 
the traditional cybersecurity testing should be augmented by attacking the AI 
component’s availability, integrity, and confidentiality and privacy. These particular 
attacks are of high consequence to any AI-enabled system as an adversary may be 
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able to exploit cyber vulnerabilities of the system to affect the operation of the AI 
component. Strong cyber defense is the first line of defense against many (prob-
ably most) adversarial attacks. However, the Department of the Air Force (DAF) 
T&E process cannot test for all potential cyber breaches of AI models. Therefore, 
in-depth defense is called for, which employs a zero-trust architecture and T&E of 
AI-based software defects and operational performance degradation.

Beyond the traditional cyber risks that would enable the adversary to access 
the AI component, other risks are unique to the operation of the AI component. 
These involve the data supply chain (training and test data), the model, and the 
manipulation of the domain to control the operation of the AI component. These 
risks are described in more detail in this chapter. Mitigating these risks may in-
volve new T&E approaches that mimic an adversary’s actions during all phases 
of the AI-component life cycle to assure that the AI component is resilient dur-
ing the development, training, deployment, retraining, and adaptation of the AI 
implementation to different operational environments.

Even with strong cyber defenses in place, the adversary can still attack an air 
force AI-based system. In particular, physically-based attacks using camouflage, 
concealment, or deception are possible avenues to biasing, denying, and poisoning 
training data, training labels, and operational data. Particularly insidious are back-
door attacks, which poison the training data (without changing the training labels) 
and then use triggers during actual operations to misdirect or degrade the AI models 
during missions. This motivates the need for DAF red-teaming to uncover these 
potential attack vectors and their likely effects. DAF-specific adversarial training and 
detection algorithms that target the vulnerabilities discovered by red-teaming can 
be incorporated into AI-based systems and tested by DAF T&E processes.

AI-based systems are subject to environmental and adversarial effects that can 
degrade performance. The current DAF requirements-driven T&E processes can 
uncover the effect of these attacks if the AI model performance is degraded below 
the required, acceptable ranges. Thus DAF DT&E that tests performance with 
hold-out datasets can be employed as a defense against some attacks. In addition, 
OT&E performance tests can ferret out operational environmental degrading ef-
fects, which may motivate model retraining using new datasets.

Some attacks, referred to as backdoor attacks, only manifest once the adversary 
triggers them. Unfortunately, it is intractable to test against all possible triggers, 
and techniques that hide triggers to make them difficult to detect by humans 
and machines have been developed. Thus, the mitigations, in this case, are (a) to 
make such attacks hard to accomplish (which will be discussed further below) and 
(b) in the case where the attack intends to degrade overall performance, to build 
monitor systems that check the AI components during run-time for performance 
degradation and take appropriate action. The T&E role, in this case, is to cause the 
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AI model to fail through a simulated backdoor attack and then to test the monitor 
to ensure it detects the deviation.

The DAF T&E process is responsible for uncovering attacks and environmental 
situations that generally degrade performance. The DAF will have to depend on cy-
ber defenses to broadly restrict adversarial attacks by denying access to data (training 
and testing) and queries (to protect against inversion and privacy attacks). T&E can 
also test monitors that look for out-of-spec performance deviations. Finally, T&E can 
test against threats that red teaming has uncovered to the extent that these threats 
are detectable. This implies a very close relationship between red-teaming and T&E.

5.2 GENERAL RISKS OF AI-ENABLED SYSTEMS

From a T&E perspective, the areas of an AI-enabled system that must be pro-
tected are the availability, integrity, and confidentiality and privacy of the AI system:

•	 Availability and integrity of the AI output
•	 The integrity of the AI model, data, and software
•	 Confidentiality and privacy of the model and training data

Several risks are inherent to using AI in operational environments. Awareness 
is the first step in mitigating such risks, so the committee discusses here some main 
challenges that have been identified.

AI is dependent on its training data, and its predictions are only as good as the 
data it has been trained on. Limited data in some scenarios can lead to inherent 
biases and risks. For instance, having no training data from below-freezing weather 
conditions means the AI model will not be accurate in such operational conditions.

Additionally, AI implementations are very sensitive to distribution shifts, which 
often happen gradually and slowly degrade the performance of an AI element, in-
dependent system, or joint cognitive system. This could be caused by slow changes 
(e.g., in the landscapes in satellite images, degradation of sensors due to dirt, and 
other factors). Even updates to sensor software can result in distribution shifts in 
the data. Detecting these distribution shifts is a major challenge in AI.

At the extreme, out-of-distribution (OOD) AI predictions occur when a model 
is presented with data outside of the distribution it was trained on. Unfortunately, 
AI models cannot robustly detect if data are OOD; in other words, they do not know 
what they do not know. Instead, AI models learn to make predictions based on pat-
terns and relationships specific to the training data. As a result, they do not generalize 
well to novel data, and even a bit of extra signal noise in a sensor collection, which 
might be invisible to the human eye, can potentially confuse an AI system. For exam-
ple, in object classification in image data, small perturbations of the image data can 
create a movement toward a centroid within the ML classifier that will mis-classify 
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the object. This was famously demonstrated by the noise introduced in the classifi-
cation of stop signs, causing the system to classify the object as a speed limit sign.1

5.3 AI CORRUPTION UNDER OPERATIONAL CONDITIONS

In January 2023, the Office of the Undersecretary of Defense for Policy issued DoD 
Directive 3000.09, which states that the Director of Operational Test and Evaluation 
(DOT&E) “[e]valuates whether autonomous and semi-autonomous weapon systems 
under DOT&E oversight have met standards for rigorous V&V and T&E in realistic 
operational conditions, including potential adversary action, to provide sufficient 
confidence that the probability and consequences of failures have been minimized.”2

This latest policy on autonomous weapon systems illustrates the nature of 
placing adversarial attacks against AI-enabled systems in the context of all threats 
in realistic operating conditions. Thus, while this report focuses specifically on the 
question of adversarial attacks against the AI components, it is important to con-
tinue to test and evaluate AI-enabled systems against a broad spectrum of adversaries 
and attacks in a realistic operational context. In addition to development and test 
datasets, the collection and use of operational data, especially in training AI compo-
nents, is key to mitigating threats to the AI component and the system as a whole.

The consideration of adversarial AI should be in addition to all traditional 
cyber threats associated with more traditional integrated systems. Software vulner-
abilities, supply chain vulnerabilities, insider threats, network vulnerabilities, denial 
of service attacks, privilege escalation, and root of trust attacks are just a few of 
the traditional threats that remain in AI-enabled systems and must be addressed. 
These threats frequently dominate the new categories of AI corruption based on the 
incorporation of AI technology. While these novel attacks are important to detect 
and mitigate today, the ability of an adversary to attack the software and networks 
of the integrated system may be an even larger risk to the operation.

Also of note is the rapid evolution of attacks against AI-enabled systems. This 
results from the attention on AI systems in academia, the private sector, and the 
government. This is similar to the rapid evolution of cyberattacks in the early 2000s 
when attention was centered on network-enabled systems. The committee would 
expect adversarial attacks against AI-enabled systems to follow the same pattern; 
rapid evolution of individual attacks followed by a more comprehensive set of 
mitigations on attack strategies and consistent policy and taxonomies on AI attacks. 
Some examples of adversarial attacks on AI are shown in Box 5-1.

 �1 K. Eykhold, I. Evtimonv, E. Fernandes, et al., “Robust Physical-World Attacks on Deep Learning 
Visual Classification,” arXiv:1707.08945, https://arxiv.org/pdf/1707.08945.pdf.

 �2 N. VanHoudnos, B. Draper, J. Richards, J. Schneider, and N. Carlini, 2022, “DoD Zero Trust Strat-
egy,” Washington, DC: Department of Defense, https://dodcio.defense.gov/Portals/0/Documents/
Library/DoD-ZTStrategy.pdf.
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To properly scope the discussion on AI corruption, it is important to clearly 
define the concept of AI corruption. Although there is significant literature on 
various attacks against AI systems, there is no standard definition to date for AI 
corruption. In this context, the committee defines AI corruption as:

AI corruption is the deliberate or unintentional manipulation of the data, hardware, or 
software of an AI-enabled system that causes the system to produce missing, inaccurate, 
or misleading results, to deny or degrade the use of the system, or to force the system to 
expose hidden information used in the training or configuration of the AI component.

The result of AI corruption is a decrease in the quality attributes of an AI 
component. This may be in the form of statistical measures such as precision and 
recall, reduction of a performance envelope required for a mission objective, or in 
a violation of the system’s security requirements, such as maintaining the secrecy 

BOX 5-1 
Some Examples of Adversarial Attacks Against AI Systemsa

Adversarial examples: These are inputs to a machine learning model that are specifically designed 
to mislead the model and cause it to make incorrect predictions. Adversarial examples can be 
created by adding small, imperceptible perturbations to the input data designed to fool the model.

Poisoning attacks: These attacks involve introducing malicious or misleading data into a ma-
chine learning model’s training data in an attempt to corrupt the model’s output.

Evasion attacks: These attacks involve manipulating the input data specifically to evade detec-
tion by a machine learning model that is being used for security or fraud detection purposes.

Model inversion attacks: These attacks involve attempting to recover sensitive information about 
the data used to train a machine learning model by manipulating the model’s output and using 
it to infer information about the input data. Also known as a data inference attack.

Model stealing attacks: These attacks involve attempting to reverse engineer a machine learn-
ing model by studying its output and attempting to recreate the model’s underlying structure 
and parameters.

Overfitting attacks: These attacks involve training a machine learning model on a dataset that 
is not representative of the data it will encounter in the real world, leading to poor generaliza-
tion performance.

Explainability attacks: These attacks involve manipulating the output of an explainable AI 
system in an attempt to mislead or deceive the user.

a V. Shepardson, G. McGraw, H. Figueroa, and R. Bonett, “A Taxonomy of ML Attacks,” MLSEC Musings 
(blog), Berryville Institute of Machine Learning, https://berryvilleiml.com/taxonomy.
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of the training set for the AI component. The source of the AI corruption may be a 
deliberate cyber or physical attack (e.g., destroying a critical sensor or breaking into 
the server running the AI component) or a result of accidental or environmental 
conditions (heavy rain or fog distorting sensor input or fault of the hardware or 
software supporting the component).

5.4 ATTACK SURFACES FOR AI-ENABLED SYSTEMS

The attack surface of any system is defined by NIST (NIST SP 800-172 from 
GAO-19-128) as the set of points on the boundary of a system, a system element, 
or an environment where an attacker can try to enter, cause an effect on, or extract 
data from, that system, system element or environment. For all systems, AI-enabled 
or not, this defines a surface that must be secured against threats and tested during 
T&E. Thus, all traditional testing for adversarial attacks against the attack surface 
that has been previously defined is still required. Defensive mechanisms that obvi-
ate or limit the capability of an adversary to take advantage of an attack surface are 
also the first line of defense for AI-enabled components.

The traditional cyberattack surface can be considered a starting point for de-
fining an attack surface for an AI-enabled system. The rationale for starting with 
the cyberattack surface is that the AI-enabled component is a data-driven software 
system, so it shares much of the same surface for an adversary to disrupt, deny, or 
degrade the system containing the AI-enabled component, which could also pro-
vide access by the adversary to the data or software in the AI component.

In addition to the cyberattack surface, the AI component may enable an at-
tack surface beyond the traditional cyberattack surface. This access is due to the 
dependencies on data within the deployed environment and in the backend infra-
structure, the supply chain of any AI model in the component, and the potential 
for retraining and adaptation with an adversary-controlled environment. These 
attacks, as described below, expand the traditional attack surface and should be 
considered for the T&E of any AI-enabled system.

Vulnerabilities in AI-enabled components may be addressed by limiting ad-
versarial access to this component through traditional separation and protec-
tion mechanisms. Thus, removing traditional vulnerabilities and adding robust 
protections to systems containing AI components can limit an adversary’s ability 
to influence, deny, degrade, or corrupt the functions of the AI component. In all 
cases, the limitation of access by the adversary to the component is considered the 
first line of defense in preventing AI corruption in operational conditions. These 
include but are not limited to network protections, authentication, and authoriza-
tion to system functions, data at rest and data at motion protections, distributed 
system protections, rate limiting to prevent denial of service attacks, and robust 
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sensor and actuator protection. The committee can address the white box-black 
box considerations in adversarial attacks and defenses.

An AI-enabled system consists of many components—those that are specific 
to AI and components that are part of a more traditional system supporting 
other functional components. For example, a system that uses a model for object 
detection may be part of a larger fix and target system supporting a weapons 
platform. So, the attack surface of a system that includes AI-enabled compo-
nents also includes the traditional attack surface of the classic system supporting 
the AI component. This is especially important in the T&E of the system as a 
whole, as the details of how the AI component is integrated with the traditional 
system may expand or limit the entire attack surface, which might lead to  
AI corruption.

While this definition is relevant for AI-enabled systems, some additional vec-
tors should be considered in the life cycle of the AI component. For example, an 
AI component relies on sensor data free from adversary manipulation, which may 
be difficult in operational environments. An adversary may alter the environment 
to cause the AI component to miss-classify an object, thus attacking the system 
without going through the traditional attack surface.

Another way an AI-enabled system may be attacked beyond the traditional 
vulnerabilities is by forcing the AI component to respond to many sensor inputs 
by exposing some of the data used to train the AI model (known as an inversion 
attack against the ML system). These attacks are effective even with limited ac-
cess to the ML model and can expose the limitations of the AI component to the 
adversary.

Yet another attack that is usually not part of a traditional attack surface is the 
manipulation of training data to an ML component to cause the model to learn 
a response beneficial to the adversary in an operational deployment. This can be 
accomplished not only in the initial training of the model but during retraining 
when the model is updated to respond to updated environmental conditional 
post-deployment.

AI model inversion attacks refer to techniques that aim to reverse engineer the 
internal workings of an AI model. These attacks are a type of adversarial attack in 
which an attacker seeks to reconstruct the input data or features used to train a model 
or to generate synthetic inputs that will produce a desired output from the model.

Model inversion attacks are a potential concern because they could allow an 
attacker to learn sensitive information about the training data or the training 
process itself, which could exploit the model’s vulnerabilities or craft adversarial 
examples that can fool the model. Model inversion attacks can be particularly 
dangerous when applied to models used in high-stakes situations, such as DoD 
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weapons systems or decision support systems, as they could result in incorrect or 
biased decisions.

Several methods can be used to defend against model inversion attacks, in-
cluding techniques such as differential privacy to obscure the training data and 
designing models to be robust against adversarial examples.

In summary, the attack surface of AI-enabled systems encompasses all tra-
ditional attack surfaces inherent in software-intensive systems—especially those 
of ML-enabled systems—but has the additional considerations of AI corruption 
through the life cycle of the AI system, including the data used in training, test, 
and operations, and the access to the details in any configuration or model that is 
part of the AI component.

5.5 RISK OF ADVERSARIAL ATTACKS

It can be useful to divide the risk of adversarial attacks into the different 
levels of integration of the AI-enabled system. The AI component is tested 
as a standalone system at the most basic level. At this level, the primary risk 
of adversarial attack is in the supply chain of the software and data used to 
construct the AI component. The software may rely on open-source com-
ponents, usually modified for the specific needs of the DoD mission. These 
compounds may contain elements contributed by the adversary that have not 
previously been identified by the open-source community. The adversary may 
also have identified underlying vulnerabilities in the open-source components 
that have not yet been publicly released, and these may be incorporated into 
the delivered DoD component. It is important at the DT&E stage to utilize a 
well-resourced red team with the most up-to-date attack knowledge to expose 
any potential vulnerabilities that have become part of the software. This case 
is no different from any other software component that must be tested, but 
the complexity of open-source AI solutions may be difficult to thoroughly 
test. Other types of analysis, such as static and dynamic software testing, 
would be appropriate to augment the red team approach. Modern DevSecOps 
software pipelines include such tools and should be considered for complex 
AI incorporation.

It should also be noted that some legacy languages and software stacks may 
contain numerous vulnerabilities that enable adversarial access to the key data and 
software elements of an AI component. The use of modern type-safe languages can 
help to mitigate some of these potential vulnerabilities. Requirements and subse-
quent T&E for languages that are resilient to attack are an important mitigation 
technique for AI-enabled systems. In addition, code generation using large language 
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models such as ChatGPT may produce vulnerable code with unsafe languages 
such as C. Generation of code in a type safe language can help to mitigate some 
of these risks.3

During the development of an AI component, especially those related to ma-
chine learning (ML), the data used for training and testing the component is an 
important and critical element of exposure to potential adversarial manipulation. 
When open-source data are used, even if augmented with specific mission data, 
the potential for adversarial manipulation of the open datasets to force specific ML 
behaviors can be difficult to detect and can effectively compromise the ML-enabled 
system in deployment. Protection of the training and test datasets from adversarial 
manipulation is an important and specific need for ML components. Note that even 
exposing the training and test datasets to the adversary without their manipulation 
can provide the adversary with an important tool to discover operational manipu-
lation techniques that can force the ML-enabled system to fail during deployment, 
even if these components function properly in DT&E and OT&E. Typically this 
system is tuned and tested by a data scientist, part of the development team for 
the ML software component.

One recent advance in defense of ML components is using adversarial training. 
This augmented dataset specifically attacks the function of the ML component, 
which can then be used as a training set in the component to drive down that spe-
cific behavior. An iterative process of continuing to use adversarial examples and 
train the component to behave appropriately even in these conditions can add to 
the robustness of the model. Note, however, that over-training in the adversarial 
space could create vulnerabilities in the inversion attack of the resulting model, 
thus exposing which attacks and training sets are used to an adversary with limited 
access to the resulting deployed system.

Recognizing the planned mission objectives is also important when testing 
these components. Often the theoretical maximum performance of an ML com-
ponent is tuned to some imagined optimal point, but operational requirements 
may dictate a different point to tune the trade-offs inherent in machine learning. 
For example, it may be necessary to have a high-precision result at the expense 
of recall for a fix and target application, but for a surveillance mission, a high-
recall result may better fit operational needs. This should be recognized during 
DT&E, shown in Figure 5-1, so that by the time this component is integrated 
into the overall system, the OT&E will have the optimal mission benefit to the 
ML component.

 �3 J. He and M. Vechev, 2023, “Controlling Large Language Models to Generate Secure and Vulner-
able Code,” arXiv:2302.05319, https://doi.org/10.48550/arXiv.2302.05319.
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General advice published on testing ML-enabled components consists of the 
following:4

•	 What are you intending to test (and learn)?
•	 What logistical challenges might you encounter during testing?
•	 What are your biggest sources of risk?
•	 What is the meaning behind your metrics?
•	 How are you dealing with the scale and level of complexity of your system?
•	 How are you evaluating for bias and other unintended behaviors?

Once the systems are integrated into an operational component, there will be 
additional context for the attack surface. These concern the application interfaces 
to this component and any user interface mechanism and integrated sensor and 

 �4 V. Turri, R. Dzombak, E. Heim, N. VanHoudnos, J. Palat, and A. Sinha, 2022, “Measuring AI 
Systems Beyond Accuracy,” paper presented at AAAI Spring Symposium Series Workshop on AI 
Engineering: Creating Scalable, Human-Centered and Robust AI Systems, https://doi.org/10.48550/
arXiv.2204.04211.

FIGURE 5-1  A model development and testing environment. SOURCES: I. Ozkaya, 2021, “What 
Is Really Different in Engineering AI-Enabled Systems?” Pittsburgh, PA: Carnegie Mellon University 
Software Engineering Institute. Images re-used with permission from Carnegie Mellon University. First 
publication: Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya: “Characterizing and Detecting Mismatch 
in Machine-Learning-Enabled Systems.” WAIN@ICSE. 2021:133–140.
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actuator components that will interface with the component. At this phase, the 
software engineer must work with the data scientist to assure that the ML-enabled 
component is sufficiently protected from these interfaces to assure the adversary 
will not have a path to manipulate the operation of the ML component. During 
the life cycle, whether DevOps or traditional waterfall, isolation of the model, test 
data, and testing tools is necessary to prevent exposure of vulnerabilities specific 
to the trained model that might be exercised during deployment. In particular, if 
the adversary manipulates the test data, some important operational scenarios may 
not be tested properly, and the subsequently deployed system may not function 
properly during these scenarios. This step is demonstrated in Figure 5-2.

At the level of integration of the ML component into the operational system, 
the addition of software components and data paths expands the attack surface to 
include many elements that are likely exposed to the adversary, including the sensor 
input, data streams, and specific APIs of the system to other systems. In this case, 
many of the more traditional test procedures for an attack surface are relevant and 
appropriate with the addition of some specific control over these attack surface 
elements (e.g., sensor input) by the adversary for the express purpose of causing 
the ML component to fail. In addition, network security, data protection, encryp-
tion, and other classic defenses must be integrated at this point into the operational 
system and tested as part of the OT&E process.

Finally, the risk of adversarial attack during deployment is increased over the 
traditional software-intensive systems by creating an additional attack surface 

FIGURE 5-2  The operational environment for ML-enabled systems. SOURCE: I. Ozkaya, 2021, “What 
Is Really Different in Engineering AI-Enabled Systems?” Pittsburgh, PA: Carnegie Mellon University 
Software Engineering Institute. Images re-used with permission from Carnegie Mellon University. First 
publication: Grace A. Lewis, Stephany Bellomo, Ipek Ozkaya: “Characterizing and Detecting Mismatch 
in Machine-Learning-Enabled Systems.” WAIN@ICSE 2021:133–140.
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in the operational data (sensor and other inputs to the AI component), the life 
cycle of the AI-enabled component, and the additional vulnerability of model 
inversion.

5.6 NETWORK SECURITY AND ZERO TRUST IMPLICATIONS

Modern network security within DoD relies on the principles of zero trust (ZT). 
The framework and approach taken by DoD must be directly applied to all AI-
enabled systems during the entire life cycle of these components to address the risks 
identified above. While not all aspects of AI-enabled systems may be amenable to a 
ZT approach, the use of ZT where appropriate can decrease the risk of adversarial 
manipulation of the data or the software of the AI-enabled system. Areas where this 
may not be applicable might be cases where the sensor network and data collection 
infrastructure is outside of the ZT boundary for the system (e.g., open data for train-
ing purposes). However, in this section, ZT will be discussed where the approach is 
appropriate and within the system boundary for deployed AI-enabled systems.

Zero trust is the term for an “evolving set of cybersecurity paradigms that 
move defenses from static, network-based perimeters to focus on users, as-
sets, and resources.” Zero trust uses continuous multi-factor authentication, 
micro-segmentation, advanced encryption, endpoint security, analytics, and robust 
auditing, among other capabilities, to fortify data, applications, assets, and services 
to deliver cyber resiliency. DoD is evolving to become a more agile, more mobile, 
cloud-supported workforce, collaborating with the entirety of the DoD enterprise, 
including federal and non-federal organizations and mission partners working on 
various missions. The zero trust framework will reduce the attack surface, reduce 
risk, offer opportunities to manage the full range of risks (e.g., policy, program-
ming, budgeting, execution, cybersecurity-specific, and others), and enable more 
effective data sharing in partnership environments. It will also ensure that any 
adversary damage is quickly contained and remediated if a device, network, user, 
or credential is compromised.

As the Zero Trust Strategy states:

Trusted Interoperability Data for Warfighters: Military targeteers need secure access to data at 
the speed of relevance they can use and trust. Warfighters need to target the right adversaries 
accurately while minimizing civilian and other casualties. Today, DoD data is often siloed, 
in impractical formats, and not fully vetted or secured from the point of origin to use. The 
execution of Zero Trust provides targeteers trusted, tagged, and labeled data so they can confi-
dently employ and share it with trusted partners, assured that the data is protected, secure, and 
accessed by only the people who need it when they need it, using least privilege principles.5

 �5 DoD, 2022, “Zero Trust Strategy.”
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The benefits of securing AI based on the ZT strategy include user, device, ap-
plication, data, network, automation, and analytic approaches to securing opera-
tional systems. Appropriate implementation of zero-trust capabilities across the life 
cycle of an AI-enabled system covers much, if not all, of the AI attack surface. This 
is primarily because the nature of supply chain attacks on the training, test, and 
validation data for AI models require the same level of authentication and autho-
rization as access to the algorithms and models themselves. This is a fundamental 
principle of zero trust that all elements of the system, data, network, software, and 
interfaces be authenticated and authorized by the role of the user or software with 
access to these capabilities. Attacks against the deployed system are also largely 
addressed by authentication and authorization of all elements, including sensors 
and other inputs to the AI-enabled system, to prevent adversarial manipulation of 
any element in the pipeline of the AI-enabled system.

Stages in securing the network to support operational AI-enabled systems 
include:

•	 Data flow mapping. Define granular control access rules and policies. Sup-
port least privilege access through a full survey of IT assets, including all 
AI components, the data they rely on for training, test, and operation, and 
the trained models designed and deployed.

•	 Macro segmentation. Define software-defined networking (SDN) APIs. 
Use software-defined networks to isolate network assets and traffic. This 
will ensure that any network or component corruption is contained in 
a single segment and does not spread to other networks and functions. 
Separating ML training and test datasets from operational networks will 
reduce the attack surface for operational AI-enabled systems and mitigate 
several specific AI attacks. In addition, using specific APIs to control data 
flow and access to the AI life cycle and deployed environments will limit 
the ability of the adversary to propagate attacks to multiple operational 
systems. Note this is also a trade-off to a dynamic approach to DevSecOps 
that would enable near real-time updates to operational models based on 
retraining and updates on changing deployed environments as well as the 
use of operational data in the development and training of new models. 
Note that this approach may increase the risk of adversary manipulation 
of the retraining data to drift the model to be more beneficial to the adver-
sary once the retrained model is deployed. This is an inherent trade-off in 
retraining with operational data that includes adversarial input.

•	 Software-defined networking. Assure that all network transport is tightly 
controlled and adaptable to conditions that may be under adversarial 
control. Thus, the use of dynamic network controls, bandwidth, routing, 
and assurance can be monitored and dynamically adjusted based on any 
changing conditions.
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•	 Datacenter segmentation. Assuring that access to datacenter resources 
(including access to data repositories and microservices) is not based 
on network address or reusable tokens but instead on the continuous 
authentication and authorization of principles of the access to datacenter 
services.

Finding 5-1: Existing research on attacks on AI-enabled systems and strate-
gies for mitigating them consider attacks that require unimpeded access to an 
underlying AI model. These attacks are unlikely to be practical with traditional 
protections and mitigations inherent in deployed DAF systems.

Finding 5-2: Ongoing research on adversarial attacks on AI-enabled systems 
focus on performance on benchmark datasets which are inadequate for 
simulating operational attacks. It appears that as robustness to adversarial 
attacks is improved, the performance often goes down. Even on benchmark 
datasets, the trade-off between potential performance reduction and im-
proved robustness is not understood. More importantly, the defenses are 
designed to thwart known attacks. Such pre-trained defenses are not effec-
tive for novel attacks.

Finding 5-3: The impact of adversarial attacks on human-AI enabled systems 
has not been well understood.

At present, the DoD Zero Trust Strategy is only being implemented on en-
terprise systems. However, it should also be implemented on all DAF AI-enabled 
systems. This overarching goal may be done in a series of steps.

Recommendation 5-1: The Department of the Air Force (DAF) should fund 
research activities that investigate the trade-offs between model resilience 
to adversarial attack and model performance under operational conditions. 
This research should account for a range of known and novel attacks whose 
specific effects may be unknown, but can be postulated based on state-of-the-
art research. The research should explore mitigation options, up to and in-
cluding direct human intervention that ensures fielded systems can continue 
to function even while under attack. The DAF should also simulate, evaluate 
and generate defenses to known and novel adversarial attacks as well as 
quantitatively determine the trade-off between potential loss of perfor-
mance and increased robustness of artificial intelligence–enabled systems.

Recommendation 5-2: The Department of the Air Force (DAF) should ap-
ply the DoD Zero Trust Strategy to all DAF artificial intelligence–enabled 
systems.
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The DoD Zero Trust Strategy concludes:

To achieve the DoD Zero Trust Strategic Vision, the Department must pursue the strategic 
goals outlined above as an enterprise. While this is an enormous task, DoD has already 
made significant progress. Dating over a decade, DoD has advanced cybersecurity through 
initiatives such as continuous monitoring, multifactor authentication, and others. The 
technologies and solutions that create ZT, and the benefits it provides, must become a part 
of the Department’s lexicon and be accounted for in every plan and operation.

Cybersecurity in the world today is, by definition, a moving target, and while it may move, 
the concept and the culture will remain the same, even as the Department adapts and refines 
the strategy. Ongoing and open communication and coordination, underpinned by proper 
funding and resourcing, are key to the strategy’s success.

The Department’s ability to protect, and by extension, DoD personnel against the array of 
increasingly sophisticated cybersecurity threats depends on it.

5.7 ROBUST AND SECURE AI MODELS

A common approach for increasing the robustness and security of AI models 
is the incorporation of monitoring or watchdog systems that compare the output 
of an AI-enabled system to pre-defined operational limits. Should the AI system 
stray from these operations limits, the external monitoring will take control and 
prevent the system from drifting beyond these predefined limits. This is similar to 
guardrails that OpenAI has placed on its ChatGPT system to prevent this system 
from abuse or offensive results during its use.

Recent studies have shown that the incorporation of guardrails on large lan-
guage models and similar neural-network AI systems may lead to inaccurate results. 
For the most recent GPT–4 release, a comparison of the calibration curve of the 
model prior to the guardrails versus after leads to a significant reduction in the 
correctness of the results, as shown in Figure 5-3.6 The figure demonstrates the 
trade-off of the accuracy of the base model (first chart) where provided answers 
are correct as they become more available. The second chart demonstrates that 
with the application of guardrails within the models, the availability of answers 
[P(answer)] have a lower probability of correctness within the critical range of 
0.4–0.8 P(answer). This indicates that with the guardrails, the likelihood of incor-
rect answers (associated with hallucination) is much higher with the same avail-
ability of the answer than the base model without the guardrails. The feasibility of 
guardrails and monitoring of AI-enabled systems is an area of ongoing research, 
including monitoring to detect attacks and ensure recoverability of the system.

 �6 OpenAI, 2023, “GPT-4 Technical Report,” arXiv:2303.08774, https://arxiv.org/abs/2303.08774.
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Robustness is the property that a software component (that includes AI-enabled 
components) can meet mission requirements with variations in the operational en-
vironment.7 Robustness is measured and tested during T&E with the introduction 
of deliberate perturbations of the environment beyond the initial configuration and 
training of the software component. This may be an introduction of environmental 
variations (weather, background, noise, etc.) or variations in detected signals (new 
objects, other sensory inputs, or variations on decision support). If the SUT passes 
these variations, it is deemed to be robust. Note the expectation is that this is similar 
to stress testing hardware systems to determine the performance envelope of the 
actual delivered system. This testing also enhances justified confidence (see below) 
as it can generate a more specific set of operational environments and constraints 
that is communicated to the operator during deployment.

5.8 RESEARCH IN T&E TO ADDRESS ADVERSARIAL AI

To enable DAF T&E, it will be important to distinguish between practical 
attacks by near-peer adversaries and academic attacks that would be impractical 
in deployed systems. In particular, attacks that require unimpeded access to an 
underlying AI model are unlikely to be practical with traditional protections 
and mitigations inherent in deployed DAF systems. Nevertheless, as stated 

 �7 Variations regarding adversarial attacks were discussed in Section 3; in this section robustness also 
includes both adversarial and non-adversarial variations in the environment.

FIGURE 5-3  A comparison of the calibration curve of GPT-4 prior to and after the incorporation of 
guardrails. SOURCE: OpenAI, 2023, “GPT–4 Technical Report,” arXiv:2303.08774, https://arxiv.org/
abs/2303.08774.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

T e s t  a n d  E v a l u a t i o n  C h a l l e n g e s  i n  AI  - E n a b l e d  S y s t e m s 118 T e s t  a n d  E v a l u a t i o n  C h a l l e n g e s  i n  AI  - E n a b l e d  S y s t e m s 

above, the use of cybersecurity vulnerabilities to reach AI components will 
continue to be a primary attack vector for the foreseeable future, and research 
in the mitigation of these vulnerabilities will be increasingly important to AI-
enabled systems.

However, there are other AI-specific attacks that do not require unimpeded 
access to the AI model, its data, or software. These may include model inversion 
attacks and environmental manipulation attacks that exploit the mechanisms of the 
AI component without direct access. Even attacks that require unimpeded access 
to the AI model may be successful due to the transferability of adversarial attacks. 
Attacks that can be implemented on more accessible models may then be used 
to attack the target model. Future research to identify and mitigate these attacks 
should be a priority for DAF T&E.

For identified attacks against AI systems either through cyber vulnerabili-
ties or through manipulation of the data input and model behavior, research to 
identify these attacks as they are happening in near real time may allow mitiga-
tion through response actions. In addition, this traditional approach to intrusion 
detection and response can include specific attack characterizations of adversarial 
AI. Research along these lines continues and will be important to include in T&E 
activities.

Other mitigations, such as external observation and fencing of AI behavior, 
can also be used to identify adversarial AI and must also be a part of DAF T&E.

Robustness (i.e., graceful degradation) and resilience (countering the effects 
when detected) against both natural and adversarial corruptions and perfor-
mance losses are vibrant areas of academic and industry research and constitute 
an integral part of the OUSD(R&E) trusted AI thrust. Hence, we should see ac-
celerated future progress that the Air Force can exploit. This is discussed briefly 
in Section 6.1.

The DAF should not just be a fast follower of private sector research and 
development (R&D) in this area but should prototype advanced applications for 
DAF-specific situations and systems and should pursue a few key research vectors 
that are perhaps not as important in academic and industrial settings. Based on 
the information gathered by the committee, the following R&D thrusts are par-
ticularly important:

First, general red teaming R&D of potential adversary attacks for a few distinct 
scenarios:

1.	 The scenario where the adversary does not compromise our cyber security 
but can use camouflage, concealment, and denial to influence model train-
ing and achieve model evasion or performance degradation.

2.	 The scenario where the adversary attempts to compromise our cyber secu-
rity and then uses a variety of adversarial attacks.
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Second, blue teaming of detection and mitigation of the above, and counter 
AI R&D. Since the adversary may be vulnerable to similar attacks, we need to keep 
this work at appropriate levels of classification. We should also consider “battle 
reserve” models as an approach.

There are several promising areas of research that will improve the mitigation 
of adversarial AI including:

•	 Techniques for data sanitization. In many cases, sensitive data would need 
to be sanitized to prevent training data from exposure during model inver-
sion or when testing new types of AI-enabled systems. However, current 
approaches to sanitization do not effectively support the trade-off between 
the effective training of the system and the possibility of leaking sensitive 
data. research into new techniques for data sanitization is necessary to 
resolve this trade-off. The same research may be used in areas such as data 
privacy, where specific personally identifiable information (PII) or other 
sensitive data may be used in the training of an AI-enabled system.

•	 Quantifiable uncertainty (QU). DAF systems and operations models should 
be inherently capable of reporting QU. Through thorough testing, QU met-
rics should be sufficiently documented to be used confidently in operational 
contexts or have external monitors or guardrails of performance integrated 
into their deployed systems. Research into approaches to model-inherent 
QU is a rich area of enquiry.

•	 Certifiable robustness (CR). The main issue with CR in the recent past is that 
techniques that work only apply to rather restrictive cases, tend to degrade 
performance, and often require an inordinate amount of computation. 
However, recent innovations are showing progress. As Salman et al. (2021), 
write:

Certified patch defenses can guarantee robustness of an image classifier to arbitrary changes 
within a bounded contiguous region. But, currently, this robustness comes at a cost of 
degraded standard accuracies and slower inference times. The committee demonstrates 
how using vision transformers enables significantly better-certified patch robustness that 
is also more computationally efficient and does not incur a substantial drop in standard 
accuracy. These improvements stem from the inherent ability of the vision transformer to 
gracefully handle largely masked images.8

 �8 H. Salman, J. Saachi, E. Wong, and A. Madry, 2022, “Certified Patch Robustness via Smoothed 
Vision Transformers,” Pp. 15137–15147 in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), New Orleans, LA: IEEE Computer Society and CVF Computer 
Vision.
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Conclusion 5-1: Promising areas of research that will improve the mitigation of 
adversarial AI include techniques for data sanitization, quantifiable uncertainty, 
and certifiable robustness.

Additionally, Chapter 6 discusses additional emerging AI technologies and 
promising areas of research. Thus, the DAF should invest in further R&D at both 
the foundational level and at the applied level, in particular the DAF in the use of 
these techniques to DAF AI models/AI-enabled systems.
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6
Emerging AI Technologies and 

Future T&E Implications

New and promising artificial intelligence (AI) techniques and capabilities 
are on the horizon. Even as the Department of the Air Force (DAF) addresses its 
current needs and opportunities, it must evaluate these emerging AI trends and 
their likely implications for test and evaluation (T&E). The committee was tasked 
with recommending “promising areas of science and technology that may lead to 
improved detection and mitigation of AI corruption” (see Appendix A). Although 
it is difficult to predict which AI advances will be most impactful for Air Force 
applications with precision, five areas seem particularly salient:

•	 Trustworthy AI
•	 Foundation Models
•	 Informed Machine Learning Models
•	 AI-Based Data Generators
•	 AI Gaming for Complex Decision-Making

Each of these areas has implications for future Air Force T&E practices and 
infrastructure needs, as discussed below.

Recommendation 6-1: The Department of the Air Force should focus on 
the following promising areas of science and technology that may lead to 
improved detection and mitigation of artificial intelligence (AI) corruption: 
trustworthy AI, foundation models, informed machine learning, AI-based 
data generators, AI gaming for complex decision-making, and a founda-
tional understanding of AI.
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6.1 TRUSTWORTHY AI

The pressure to reap the benefits of AI technology has encouraged private 
industry to market AI-based products even though there is no tightly bound 
theoretical understanding of their performance and robustness. The risk of 
failure is tolerated because the consequences are acceptable.1 Commercial AI is 
generally hardened through continual testing and rapid incremental refinement, 
usually through extensive user feedback. The DAF should employ this approach 
whenever possible; nevertheless, it is difficult to confidently engineer robustness 
and performance into a system when the performance foundations are poorly 
understood. As military services seek to apply and deploy AI under dynamic and 
high-risk operational conditions, the need for AI robustness, survivability, resil-
ience, safety, fairness, explainability, ethics, and theoretical performance bounds 
becomes crucial.

There are several barriers to trustworthy AI. First, current machine learning 
performance theory lags behind the practical application of AI. For instance, ex-
isting theory cannot reliably predict how a neural network architecture will affect 
performance or how well a learned model will perform in new environments or 
under new operating conditions. This situation presents a fundamental risk to the 
trustworthiness of AI and challenges the use of AI in military weapon systems and 
other safety-critical applications.

A second barrier is a dearth of rigorous testing mechanisms. Testing systems 
in controlled environments yields over-optimistic evaluations of an AI system’s 
performance, while testing “in the wild” may present significant risks to bystand-
ers; this issue has been observed in catastrophic failures of autonomous vehicles.

A third barrier is limitations in training data. For instance, large language 
models have made significant strides in English, but their extension to languages 
with far less online content from which to scrape training data will be challenging 
and face inherent limitations. Furthermore, biases in training data can harm some 
stakeholders, as evidenced by Google’s and Amazon’s AI recruiting tools being 
biased against women2 and facial recognition systems not accurately recognizing 
Black people, partly because those systems had limited training samples from cer-
tain subpopulations. Similar challenges will have high-stakes consequences in DAF 
deployments in various communities, cultures, and environments.

Trustworthy AI depends on reliable human-AI interactions. Humans must 
be able to see an AI’s prediction and assess its confidence in that prediction and 

 �1 Of course, this observation does not apply to the use of AI in safety-critical commercial systems 
such as industrial robotics or self-driving cars. Indeed, the T&E approaches and requirements for 
trustworthy components are similar to those faced by the DAF.

 �2 J. Dastin, 2018, “Amazon Scraps Secret AI Recruiting Tool that Showed Bias Against Women,” 
Reuters, https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps- 
secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G.

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

123E m e r g i n g  A I  T e c h n o l o g i e s  a n d  F u t u r e  T & E  I m p l i c at  i o n s

characterize the AI’s basis for that prediction. Without interpretability and uncer-
tainty quantification, trust in AI will remain limited.

Mechanisms for adapting to distribution drifts are essential to trustworthy AI. 
Furthermore, such mechanisms are necessary to account for shifting environmen-
tal conditions and imbalances in training data (e.g., having different fractions of 
samples for different subpopulations at test time than at training time).

AI components are often integrated into a larger system, so typical metrics used 
to assess an AI component’s performance in isolation may inaccurately reflect its 
effect on the overall system performance.

Finally, trustworthy AI systems must be robust in the face of training- and 
inference-time attacks. Training-time attacks include data poisoning attacks and 
back doors, while inference-time attacks include making small changes to test 
samples to induce significant changes to the AI output—both white-box attacks 
that depend on knowledge of the AI model’s inner workings and black-box attacks 
which pose risks even when details of the AI model are hidden.

DoD has recognized the need to improve the trustworthiness of AI. How AI will 
interact with the warfighter to improve trustworthiness is becoming a central con-
cern as DoD seeks to adopt AI technologies. Human-AI interaction models, as they 
exist now, do not account for the dynamic and stressful situations in which war
fighters find themselves. Thus, in its February 2022 memo, “Technology Vision for 
an Era of Competition,” the OUSD(R&E) identified “Trusted AI and Autonomy” 
as one of 14 critical technologies areas and noted that, “[t]rusted AI with trusted 
autonomous systems are imperative to dominate future conflicts.”

Furthermore, the June 2022 DoD report U.S. DoD Responsible AI Strategy and 
Implementation Pathway stated, “[t]o ensure that our citizens, warfighters, and 
leaders can trust the outputs of DoD AI capabilities, DoD must demonstrate that 
our military’s steadfast commitment to lawful and ethical behavior applies when 
designing, developing, testing, procuring, deploying, and using Al.”

The basic issue is whether a warfighter will trust their life to an AI-based system. 
These DoD concerns, combined with heightened public concern, have encouraged 
intensified research and development in trustworthy AI technologies. As a result, 
we can expect both near- and longer-term progress that will benefit AI-based DAF 
systems in general and DAF AI T&E specifically.

Finding 6-1: Existing approaches for designing trustworthy AI-enabled systems do 
not take into account the role of humans who interact with the AI-enabled systems.

Implications of Advances in Trustworthy AI to DAF T&E

While many challenges will undoubtedly persist into the foreseeable future, the 
continued focus from both private industry and the U.S. government will improve 
understanding of the theoretical foundations and will lead to the creation of more 
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trustworthy AI components. Furthermore, these advances will lend greater clarity 
to the range of appropriate AI applications and will extend that range by develop-
ing new ML approaches and improved architectures.

In short, trustworthy AI will enable higher quality and more dependable AI 
components. Additionally, advances expected in the next few years will permit AI 
adopters to insist that ML models have their uncertainty comprehensively mea-
sured or analytically bounded. Again, this will greatly benefit T&E activities. Ulti-
mately, an ML component should be able to incorporate quantifiable uncertainty 
as part of its output. Thus, systems based on these components will already have a 
good test base from which to proceed to system-level testing, which will not only aid 
T&E but also help guarantee robust and resilient operation and promote user trust.

To reap the benefits of trustworthy AI components, the DAF must adopt new 
system engineering and T&E practices that explicitly incorporate requirements 
for trustworthy AI. The DAF will need acquisition approaches that recognize the 
state of the art in AI trustworthiness, placing realistic but aggressive requirements 
on AI components. These new practices must be codified in a set of standards and 
supported by appropriate tools and infrastructure. Developmental testbeds will be 
needed to explicitly measure AI robustness, resilience, safety, and other trustworthi-
ness attributes. The Air Force will need T&E processes, canonical test datasets, and 
infrastructure to perform T&E of these higher-quality AI components, including 
the means to efficiently test performance against out-of-distribution, dynamic, and 
unexpected operational conditions. AI data generators will likely play a key role. In 
addition, adversarial T&E processes similar to those emerging in the cyber domain 
will be important to probe and redress vulnerabilities and deficiencies.

Recommendation 6-2: The Department of the Air Force should invest in de-
veloping and testing trustworthy artificial intelligence (AI)-enabled systems. 
Warfighters are trained to work with reliable hardware and software-based 
advanced weapon systems. Such trust and justified confidence must be de-
veloped with AI-enabled systems.

Trustworthy AI components will be enablers for safety critical systems such 
as weapon systems and semi or fully autonomous vehicles. However, not all trust-
worthy AI components must necessarily be fail-safe. As with other complex sys-
tems, some failure modes will be acceptable given the operational context of the 
model. The goal in engineering a trustworthy AI component will be to make its 
performance significantly more interpretable and predictable than the AI models 
currently available while tailoring it to its intended application. For example, 
recommender systems can be more tolerant of errors than autonomous control 
systems and thus have different AI trustworthiness requirements. There will be a 
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natural trade between the time and expense to build certain levels of trustworthi-
ness and the intended application of the model.

Uncertainty quantification is an essential ingredient of AI-enabled DAF systems. 
Two examples of currently common paradigms include Bayesian estimation and 
conformal inference.3 Bayesian statistics have a long and rich history, and methods 
in common use by the DAF, such as Kalman filtering, are grounded in Bayesian 
methodology. However, some priors, such as priors on weights of neural networks, 
can be difficult to interpret or validate. Conformal inference uses carefully selected 
quantiles of training data to quantify the uncertainty in predictions without any dis-
tributional assumptions on the data and minimal assumptions on ML algorithms. 
This framework has a high potential for facilitating T&E. A related challenge is com-
municating uncertainty measurements to human decision-makers. If the prediction 
is a scalar value (e.g., predicted amount of precipitation next week), then the DAF 
will have various excellent tools at its disposal. But when ML systems yield high-
dimensional outputs, such as images, visualizing or communicating uncertainty 
is a persistent challenge.4 However, the rate of change is such that by the time this 
report is publicly released, several new relevant examples will have been developed.

6.2 FOUNDATION MODELS

Foundation models (FMs)5 are deep learning models that have emerged in the 
past 5 years, initially for language processing applications, where they are called 
large language models (LLMs) (exemplified in Figure 6-1). However, FMs have 
recently been applied to visual, multimodal, and multitask applications. These 
models are extremely large deep neural networks that use immense training sets, 
with some models exceeding 100 billion learning parameters. FMs employ self-
supervised learning (SSL) where the model is presented with (x’, x) pairs, where x’ 
is an edited version of x with some of the constituents of x having been excised. 
The model is taught to predict the excised constituents and uses as a training signal 
its understanding of the full contents of each x to generate a loss function. Typical 
examples of edits for image and video-based SSL are coloring, rearranging the sec-
tions of an image or frames of a video, and other geometric transformations. One 
of the main advantages of SSL is that the costly process of labeling training data 
is avoided. This can greatly simplify data curation for both training and testing.

 �3 J. Lei, M. G’Sell, A. Rinaldo, R.J. Tibshirani, and L. Wasserman, 2018, “Distribution-Free Predic-
tive Inference for Regression,” Journal of the American Statistical Association 113(523):1094–1111.

 �4 A. Angelopoulos, S. Bates, J. Malik, and M.I. Jordan, 2020, “Uncertainty Sets for Image Classifiers 
Using Conformal Prediction,” arXiv:2009.14193.

 �5 M. Casey, 2023, “Foundation Models 101: A Guide with Essential FAQs,” Snorkel AI, March 1, 
https://snorkel.ai/foundation-models.
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Today, FMs represent the state-of-art for natural language processing (NLP) 
tasks and consistently outperform the previous leaders, recurrent neural networks 
(RNNs), and long-short-time memory (LSTM) models.

Candidate applications for early Air Force adoption include language 
translation, communications denoising, language and speaker identification, 
human-machine interfaces that use DAF-specific nomenclature and idioms, 
recommender systems for training and intelligence analyses, and data summa-
rization for intelligence reporting. As CV-based FMs become mainstream, the 
Air Force can leverage them in missions that involve large amounts of ISR data, 
where FMs will perform state-of-the-art detection, classification, ID, and tracking 
tasks. Ultimately, multi-modal and multi-tasking FMs will help fuse data from 
multiple sources and will help analysts, pilots, and commanders perform complex 
and time-critical tasks.

FIGURE 6-1  The growth in the size of Large Language Models (LLMs). Due to computational 
requirements, it is unlikely that the exponential rate shown can continue indefinitely, but if the trend 
plateaus near its current size, only a small set of organizations will be able to develop future LLMs. 
SOURCE: Courtesy of NVIDIA.
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The Implication of Foundation Models for DAF T&E

The Air Force may elect to build its own FMs or procure pre-trained FMs and 
adapt them to Air Force applications. In either case, it must address the testing 
challenges that accompany these huge and complex models. For example, methods 
are still being developed to test FMs, and what methods exist are highly human-
intensive. The allure of FMs is that while initial training and T&E require huge 
datasets and computing resources, once the base FM has been trained and tested, 
it can be readily adapted to a broad suite of downstream applications. As a result, 
the amount of adaptation development and T&E required for each application is 
less than would be required if the application were created from scratch without 
the FM as a base model. Moreover, as improvements are made to the base FM, these 
newer versions can be re-integrated readily into the applications, thereby efficiently 
propagating improvements across the entire suite.

Unfortunately, today’s FMs are huge “black-box” components—literally 100s 
of billions of learning parameters—that lack transparency, explainability, and in-
terpretability. T&E failure isolation can be a major challenge. For example, if the 
adapted FM has a failure mode, it may be unclear if the failure is due to the base 
FM, the adaptation, or the interaction between these two parts. Assigning account-
ability and correcting failures may be difficult, especially when the failures are due 
to the complex and subtle interplay between the components.

There are other issues, as well. For example, FMs will likely propagate their 
failure modes and biases to their adaptations. Thus, if the DAF has used a base FM 
for many applications, they may all exhibit the same base FM vulnerabilities. Fur-
thermore, while FMs adaptations can perform extremely well, performance under 
transfer to new environments or continual learning in evolving environments can 
be suboptimal compared to dedicated models.

The DAF may consider using commercial FMs and adapting them to Air Force 
applications. For instance, an FM trained on images may lead to “off-the-shelf” im-
age feature representations that could be used to train an Air Force EO image clas-
sifier. This framework is tantalizing in terms of the relatively fast development time 
and small computational resources required for training. However, the pre-trained 
FMs may also present significant security risks. In particular, commercial FMs are 
generally trained using massive collections of uncurated data scraped from the 
internet. This means that an adversary may post images or other data online to be 
scraped by the FM, which are explicitly designed to poison the FM for a particular 
task. For instance, an adversary might upload a series of images of jets designed to 
shift how images of jets are represented by FMs and affect downstream classifiers. 
Such attacks are almost impossible to detect, and accounting for this possibility is 
essential for accurate T&E.
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Large FMs and data generators (discussed in the next section) will require 
massive computational resources for training, T&E. Therefore, the DAF must 
consider strategies for access to supercomputing class computers. One possibility 
is to partner with the national DOE laboratories, such as Sandia National Labora-
tory or Oak Ridge National Laboratory. Another possibility is to upgrade the DoD 
high-performance computing capability to handle these demanding AI workloads. 
Leasing capability from a major cloud provider should also be investigated. In any 
case, the solution must be readily accessible to both AI developers and T&E pro-
fessionals and be able to protect data and AI software at multiple security levels.

Finding 6-2: Large language FMs exhibit a behavior termed “hallucination,” 
where the model output is either non-sensical or is not consistent with the pro-
vided input or context. The effects of hallucination are task-dependent. There 
are no metrics to assess the impact of large FMs on the various downstream 
applications they have been applied to.

Finding 6-3: Several Large FMs are available for single modality, language 
being the most dominant one. DAF tasks may involve multi-modal sensing 
and inference. SSL-based Large Language Models are just recently becoming 
available for multi-modal paired or unpaired data.

6.3 INFORMED MACHINE LEARNING MODELS

Although foundation and other data-driven deep neural network (DNN) 
models have become the mainstay of machine learning applications, newer ap-
proaches to deep learning are emerging that seek to explicitly incorporate more 
application-domain knowledge into the learning process.6 The committee refers to 
these approaches collectively as informed machine learning (IML).7 IML models 
seek variously to incorporate knowledge in the form of algebraic equations, dif-
ferential equations, simulation results, spatial invariances, logic rules, knowledge 
graphs, probabilistic relations, and human feedback into the learning process or 
the model architecture.

IML approaches increase model performance, generalizability across targeted 
domains, robustness, interpretability, and explainability. Fundamentally, IML models 

 �6 Conventional deep learning, of course, also integrates knowledge into its learning processes, 
through labeled data, feature engineering, and by exploiting invariances or equivariances (in convo-
lutional neural networks, for example); but the IML techniques seek to integrate more knowledge 
and do so in a principled manner that does not depend on the data itself but, rather, on the domain 
whence the data derives.

 �7 L.V. Rueden, S. Mayer, K. Beckh, et al., 2021, “Informed Machine Learning—A Taxonomy and 
Survey of Integrating Prior Knowledge into Learning Systems,” IEEE Transactions on Knowledge and 
Data Engineering 35(1):614–633.
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aim to improve the utility and trustworthiness of deep learning. Compared to FMs 
and other deep learning models, IML models can be relatively small and trained 
using fewer data samples. Furthermore, when an IML model incorporates general 
laws or constraints (of physics or geometry, for example) it can offer an improved 
ability to handle non-stationary environments and to generalize better beyond the 
scope of its training set.

The DAF will find numerous uses for IML models, especially in physics-based 
applications such as radar, sonar, EO/IR processing, and where the models need 
to be embedded in size, weight, and power-constrained applications. IMLs will 
also apply to applied science research, such as the discovery of new materials for 
hypersonic systems or the assessment of aircraft design under various operational 
conditions.8

Implications of Informed Machine Learning Models for DAF T&E

IML models represent an emerging area in machine learning, with many ap-
plications and research directions. The DAF needs to assess the T&E needs of these 
models in the context of relevant applications. Notwithstanding the nascent nature 
of these models, it is likely that the principled incorporation of knowledge into 
machine learning will reduce and better characterize test space coverage for DAF 
applications; this will allow for more efficient testing at both the component and 
system levels. Also, these models may be more amenable to analytical verification 
processes based on, for example, the physical constraints programmed into the 
models. The reduced size of these models and their ability to leverage and focus on 
causally related environmental features will contribute to model explainability and 
interpretability, thereby facilitating failure analysis and improving trustworthiness.

There will also be challenges to overcome for effective T&E. IML models get 
their power from the integration of prior knowledge about the application domain. 
But this human-directed incorporation of knowledge may lead to unconscious 
biases or unintended limitations embedded in the models. Also, the develop-
ment of IML models requires close collaboration between domain experts and 
machine learning experts. Thus, T&E teams and processes must be multidisci-
plinary to properly implement efficient test approaches and interpret test results. 
Furthermore, physics-based information incorporated into ML systems may be 
approximations of the true physics or may change over time or across instances. 
For example, an ML model may be trained for one radar sensor and work well in 
that context but yield poor results when used for a different sensor. Accounting for 
shifts in the physical knowledge between the training and testing phases is critical; 

 �8 G.E. Karniadakis, I.G. Kevrekidis, L. Lu, et al., 2021, “Physics-Informed Machine Learning,” Nature 
Review Physics 3:422–440, https://doi.org/10.1038/s42254-021-00314-5.
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while methods such as model adaptation can help overcome this challenge, such 
considerations are a vital component of T&E for IML systems. Finally, adversarial 
robustness may manifest differently in IML systems than in their more generic 
counterparts. While the side information embedded into IML systems may help 
reduce opportunities for data poisoning, for instance, it may also mean that new 
methods are necessary for identifying, counteracting, or safeguarding against poi-
soning attacks.

6.4 AI-BASED DATA GENERATORS

AI-based data generation is an active and rapidly advancing area in machine 
learning research and development, with many novel AI techniques appearing in 
the past 10 years. In the visual domain, for example, generators range from gen-
erative adversarial networks (GANS)9 to variational autoencoders,10 autoregressive 
models,11 normalizing flow techniques,12 and denoising diffusion models.13 Neural 
radiance field (NeRF) models have recently emerged that can generate multi-view 
3D volumetric images from multiple 2D images. NeRFs are a type of informed 
machine learning (covered in the next section) that combine neural networks and 
traditional geometry-based rendering techniques. In the text domain, generators 
include transformer-based architectures such as GPT-3 and ChatGPT.14

Data generators can create realistic augmented reality and virtual reality simu-
lations; they can fill in missing data, extrapolate or predict data based on existing 
datasets, and realistically (or otherwise) perturb existing datasets. In short, they 
can simulate an existing reality or can create fake but realistic variants of reality. 
This is demonstrated in Figure 6-2, which shows examples of photorealistic faces 
generated using a denoising diffusion model. They can create realistic images of all 
sorts and sizes that are often hard for humans to detect as fabrications. They can 
create photorealistic faces (and other objects or gestures) and can morph one face 

9 � Google Machine Learning Education, 2022, “Generative Adversarial Network,” updated July 18, 
https://developers.google.com/machine-learning/gan.

10 � J. Rocca and B. Rocca, 2019, “Understanding Variational Autoencoders (VAEs),” Towards Data 
Science, September 23, https://towardsdatascience.com/understanding-variational-autoencoders- 
vaes-f70510919f73.

11 � Author, “Guide to Autoregressive Models,” Turing, https://www.turing.com/kb/guide-to-auto 
regressive-models, accessed April 25, 2023.

12 � A. Omray, 2021, “Introduction to Normalizing Flows,” Towards Data Science. https://towards 
datascience.com/introduction-to-normalizing-flows-d002af262a4b.

13 � J. Ho, A. Jain, and P. Abbeel, 2020, “Denoising Diffusion Probabilistic Models,” University of 
California, Berkley.

14 � T. Brown, B. Mann, N. Ryder, et al., 2020, “Language Models Are Few-Shot Learners.” Advances 
in Neural Information Processing Systems 33:1877–1901.
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(or object) into another face (or object) or into a different aspect view of the same 
face (or object). They can extend beyond images to create realistic videos and 
audio. FMs, discussed earlier, can be used as text data generators, creating realistic 
sentences, full paragraphs, and even essays that could plausibly come from intel-
ligent (or otherwise) humans. By combining video generators and text generators, 
text-to-image and image-to-text transcriptions are possible. The DALL-E system 
is a modern example of the power of text-to-image generation, and ChatGPT is a 
modern example of text generation in response to prompts.

Potential DAF uses of AI-based data generators are extensive. These include 
creating training scenarios for combat games or pilot training, generating data for 
influence operations, and training machine learning algorithms and autonomous 
systems for operation in simulations of denied or contested environments. There 
are also numerous applications to ISR in data extrapolation, smoothing, or inter-
polation. Today, for example, an AI-based Global Synthetic Weather Radar (GSWR) 
system has been prototyped for the DAF. The GSWR uses AI data generation tech-
niques that integrate multiple data sources to predict how weather radar returns 
would appear in regions where they are absent.

FIGURE 6-2  Photorealistic faces generated using a denoising diffusion model. SOURCE: Courtesy 
of University of California, Berkeley.
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Finding 6-4: Physics-based and other knowledge-informed models have the 
potential to increase the robustness and computational efficiency of data-
driven methods. These models can also help enforce physics or knowledge-
based performance boundaries, which can increase the efficiency of the T&E 
process. However, to successfully deploy such models the DAF must ensure that 
the parameters and assumptions upon which they are based are actually present 
during operations, which requires additional attention to operational T&E.

Implications of AI-Based Data Generators to DAF T&E

Data generators will likely play a significant role in future DAF T&E activities. 
For example, they offer the capability to automate and accelerate the exploration of 
large test spaces using simulation; they can extrapolate from real data to generate 
unusual or special test datasets; they can be combined with live data and hardware-
in-the-loop to support integration testing; and they can help evaluate concepts of 
operation and human-machine interactions.

However, the effective use of data generators for T&E will require rigorous T&E 
of the generators themselves. This need, in turn, calls for standardized evaluation 
and test metrics for these generators that probe their vulnerabilities and limitations. 
Indeed, generated data may appear valid when in fact, it is erroneous. For example, 
GANs are quite capable of generating “fake” images, but the fidelity of the fakes 
may be crucial in certain T&E activities, such as evaluating the robustness of an 
AI-based system in new environments. The quintessential question that T&E needs 
to answer is: does the generated data properly represent the important aspects of its 
domain and intended use? More specifically, generative models can be considered 
a tool for drawing samples from an estimate of the probability density underlying 
the training data, where that density is represented using a neural network. Gener-
ated images may look realistic, but testing procedures must ensure that all modes 
of distribution are accurately captured and that rare but mission-critical events or 
samples are not ignored by the generative model

The cost and effort to produce sufficiently realistic and useful data must be 
weighed against the cost and effort of other approaches, such as operational testing 
and analytical methods. Simulation testbeds that leverage data generators may be 
expensive to build initially, but their ability to test many situations rapidly could 
readily amortize the initial investment and lead to more cost-effective T&E overall.

Recommendation 6-3: The Department of the Air Force should assess the 
capabilities of data generators to enhance testing and evaluation in the 
context of relevant applications.

Data generators can exhibit significant biases. This phenomenon has been well-
documented in the context of racial and gender biases, but in DAF settings, the 
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biases may be unpredictable, and the DAF lacks tools for detecting unanticipated 
biases. Furthermore, data generators typically are focused on generating “typical” 
samples from a distribution corresponding to the training distribution, whereas 
in some settings, the DAF may have a stronger interest in extreme or anomalous 
events. Therefore, DAF T&E must consider how data generators may affect our 
ability to understand systems in atypical operating conditions.

In addition, training state-of-the-art generative models can incur significant 
costs. For instance, it has been reported that training GPT-3 on 0.5 trillion words 
required $4.6M and generated 500 metric tons of carbon dioxide. Yet, it is unclear 
how this trend toward larger models will evolve, and it is also unknown what the 
scale of generative models for various DAF applications needs to be. Generative 
models for computer-vision applications such as image generation are generally 
smaller by orders of magnitude compared to GPT-3-scale generative language 
models, but training can nevertheless require substantial computing resources. Fu-
ture applications that combine language and computer vision models (multi-modal 
generative models) will require substantial training and will undoubtedly also pose 
computational challenges. In summary, generative AI model development and 
training costs may affect the use of such models in varied USAF contexts and limit 
the DAF’s ability to address problems with generative models uncovered in T&E.

6.5 AI GAMING FOR COMPLEX DECISION-MAKING

Recent AI gaming technology, such as Alpha Zero (Go, Chess, and Shogi) and 
Pluribus (poker), has demonstrated superhuman capabilities in extremely complex 
albeit constrained adversarial decision-making contexts. Reinforcement learning 
combined with deep learning is at the heart of these technologies. Typically, very 
large computational resources are required. These systems are often boot-strapped 
with labeled training sets and then further trained through self-play. Recent models 
(e.g., Alpha Zero) use self-play exclusively and require no labeled training data.

AI board game systems have developed strategies of play that surpass those 
that humans have developed across centuries of over-the-board play. AlphaStar 
is even more sophisticated, with the ability to play Starcraft II at the grand-
master level. StarCraft is more challenging than typical board games, as shown 
in Table 6-1. AI researchers continue to develop more sophisticated AI gam-
ing and decision-making capabilities, aiming to achieve superhuman-level 
decision-making in demanding and realistic situations.

As AI gaming technology continues to increase in sophistication, it will be an 
important technology choice to augment complex decision-making in air force 
autonomous systems, robotics, command and control, logistics, planning, and 
scheduling applications. In most circumstances, human-AI teaming will be a cru-
cial element of success (to include reinforcement learning with human feedback, 
or RLHF). In other circumstances, the gaming technology may need to operate 
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completely autonomously for periods of time, such as for EW or cyber applica-
tions where superhuman response times are required. Coordination of multiple 
assets at a large scale is another example where AI gaming technology may excel. 
For example, research today on using deep reinforcement learning to coordinate 
multiple drones in real time15 may translate to new swarm warfighting capabilities 
in the future. Based on recent successes as well as their future promise, the DAF 
should stay abreast of the latest advances in AI-enabled gaming technologies and 
explore how these capabilities might help enhance DAF missions. At the same time, 
the DAF AI T&E champion should ensure that such systems undergo the same type 
and level of T&E as any other AI-enabled weapon system.

Implications of AI Gaming for Complex Decision-Making to DAF T&E

Future advances in AI gaming and its foundational deep reinforcement learn-
ing (DRL) techniques will enable the Air Force to build systems that are more 
capable than ever before and that involve AI in more sophisticated and complex 
ways. This increased system complexity will mean more challenges facing T&E. 
Also, the teaming relationship between the human and AI elements will likely be 
much more interrelated and complex. Thus, many tests will need to assess human-
AI interactions and overall teaming effectiveness and will require more intricate 
user participation. This is typical of operational testing today, but the key point 
is that the T&E process will need to engage the user continuously, from the early 
stages of development to the operation of the system. Indeed, one important way 
to address this challenge is for the Air Force to adopt the agile and continuous 

15 � A.T. Azar, A. Koubaa, N. Mohamed, et al., 2021, “Drone Deep Reinforcement Learning: A Review,” 
Electronics 10(9):999, https://doi.org/10.3390/electronics10090999.

TABLE 6-1  A Comparison of the Challenges Presented by Games Such as Chess and Go 
Versus the Challenges Presented by Wargames Such as StarCraft

“Simple” Board Games (e.g., Chess and Go) StarCraft-Like Environments

Huge state space of possible moves Huge state space of possible moves

Fully observable Partially observable

Single-player Multiple agents and types of agents

Turn-taking Simultaneous movement

Deterministic Stochastic observations and effects

Few rules, some context coupling Many rules, often context-dependent

Non–real time Real time
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testing approaches that are currently being used by commercial industry for its 
complex AI-based systems.

In the cases where the AI agent is acting autonomously or is generating a set 
of complex decisions that exceed human capability, the systems can fail in non-
intuitive and potentially catastrophic ways. Thus, the Air Force should require that 
explainability and interpretability be key engineering goals not just for individual 
AI components but for the entire system. Additional fail-safes and data-logging 
capabilities will need to be built into such systems. Safeguarding systems that 
provide appropriate performance guarantees can help narrow the test space of the 
overall system. Lessons can be learned from the private industry efforts to build 
autonomous automobiles, where continual testing, ghost AI hosting, early user 
involvement, human-AI teaming, and other techniques are being pioneered.

Notably, researchers are making important advances in safety-critical rein-
forcement learning. For example, control barrier functions have been shown to 
provide control-theoretic guarantees for obstacle avoidance. Hamilton-Jacobi 
Reachability16 provides an exact formulation of the states that may lead to fail-
ure and can be used to formulate optimal safety control policies. While these 
techniques have difficulties generalizing and scaling, recent machine learning 
approaches are emerging that use such techniques offline to learn approximate 
but effective safety control policies. Computationally efficient, approximate but 
guaranteed safety-critical control is then applied online.17 This is a very active area 
of research, and the committee expects continued progress that will aid in DAF 
autonomous systems T&E.

Finding 6-5: Recent and anticipated advances in AI gaming technologies will 
enable the Air Force to build systems that are more capable than ever before 
and that involve AI in more sophisticated ways, but this increased system 
complexity will make the teaming relationship between the human and AI 
elements much more interrelated and complex, thereby placing additional 
challenges on effective T&E.

AI Foundations

In addition to the core area discussed above, important research is progress-
ing in foundational and theoretical AI research. A foundational understanding of 
AI is akin to investments in a foundational understanding of medicine, biology, 
chemistry, and materials science. The DAF must have strong pillars on which to 
build, test, and evaluate AI systems. Testing and evaluation of AI-enabled systems 

16 � S. Herbert, University of California, San Diego, “The Safe Autonomous Systems Lab,” http://
sylviaherbert.com/hamilton-jacobi-reachability-analysis, accessed April 27, 2023.
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require understanding the implicit biases and generalization properties of learned 
models, and when all potential operational scenarios cannot be tested explicitly, 
theory can provide invaluable insights. For instance, many modern neural networks 
are “overparameterized,” so the number of parameters learned during training far 
outstrips the amount of available training data. In these settings, we can often in-
terpolate the training data, and the architecture of the neural network determines 
the nature of the learned interpolator; theory may provide insights into the nature 
of the interpolator as a function of architecture. Interpretable machine learning, 
which is essential to our ability to debug faulty systems, is a further foundational 
research challenge. Several empirical studies have shown interpretability may come 
at the expense of accuracy, but there is no evidence that this is a fundamental or in-
surmountable challenge. Foundations are essential to understanding how a learned 
model will perform under new operating conditions or how a model trained in one 
setting will perform in a shifted environment. Theory can also inform trustwor-
thiness assessment through the development of new metrics. Privacy and stability 
guarantees, important safeguards in trustworthy AI, depend on a cadre of theoreti-
cal tools. Model compression is also ripe for theoretical advances and important 
to air force deployment or continual learning settings with limited power. Finally, 
theory is essential to the development of new tools for uncertainty quantification 
without assumptions on the distribution underlying data or properties of the 
learning algorithms or models.
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7
Concluding Thoughts

The committee was tasked with the following questions:

1.	 Evaluate and contrast current testing and assessment methods employed 
by the Department of the Air Force (DAF) and in commercial industry.

2.	 Consider examples of artificial intelligence (AI) corruption under opera-
tional conditions and against malicious cyberattacks.

3.	 Recommend promising areas of science and technology that may lead to 
improved detection and mitigation of AI corruption.

What was uncovered through investigating these questions was a significant 
overlap between the answers. For example, examples of AI corruption (question 2) 
were a common topic of promising areas of science and technology (question 3) 
and reflected as an issue in the current testing and assessment methods employed 
by the DAF (question 1).

In structuring this report, the committee organized chapters such that each 
question was primarily addressed in a specific chapter in the report, and thus the 
recommendations were primarily reported in those sections. However, each chap-
ter of the report contains relevant findings and recommendations for each of the 
questions addressed by the committee, so in practice, it was not possible to isolate 
the questions to individual chapters.

Task 1, “Evaluate and contrast current testing and assessment methods em-
ployed by the Department of the Air Force and in commercial industry,” is pri-
marily answered in Chapters 3 and 4. In these chapters, the current testing and 
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assessment methods found by the committee are described and referenced, and a 
comparison to best practices in commercial industry are directly covered. However, 
to fully understand this contrast, findings and recommendations from Chapters 2 
and 5 must be also considered.

Task 2, “Consider examples of AI corruption under operational conditions and 
against malicious cyberattacks,” is primarily addressed in Chapter 5. However, the 
topic of AI corruption is a primary challenge throughout all of the test and evalu-
ation (T&E) of AI-enabled systems and thus is mentioned throughout the study, 
especially in Chapter 6.

Task 3, “Recommend promising areas of science and technology that may lead 
to improved detection and mitigation of AI corruption,” is primarily addressed in 
Chapter 6. However, AI corruption is under active S&T research and in the spirit of 
DevSecOps and AIOps, solutions are being deployed as rapidly as they are discov-
ered. Thus, many of the approaches in Chapters 3, 4, and 5 also support findings 
and recommendations to mitigate AI corruption.

In short, the complexity, interconnection, and coupling of issues throughout 
T&E with AI-enabled systems will require a reassessment of all T&E policies, 
processes, and procedures to assure that validation and verification of all systems, 
not just the AI components, will support the necessities of a dynamic and risky 
deployment and operational environment. In this case, the committee concluded 
that while the questions appeared quite straightforward on an initial reading, in fact 
the DAF has now caught the AI tiger by its tail. Taming that tiger will be challenging, 
especially as AI-enabled components become commonplace in all platforms and 
MDAPs, but it is not at all an insurmountable problem. It requires vision, hands-on 
leadership, prioritization, and a shared commitment to an AI-enabled future DAF.
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A
Statement of Task

The National Academies of Sciences, Engineering, and Medicine will establish 
an ad hoc committee to (1) plan and convene a multi-day workshop and (2) con-
duct a consensus study to examine the Air Force Test Center’s technical capabilities 
and capacity to conduct rigorous and objective test, evaluation, and assessments 
of artificial intelligence (AI)-enabled systems under operational conditions and 
against realistic threats. Specifically, the committee will:

1.	 Evaluate and contrast current testing and assessment methods employed 
by the Department of the Air Force and in commercial industry.

2.	 Consider examples of AI corruption under operational conditions and 
against malicious cyberattacks.

3.	 Recommend promising areas of science and technology that may lead to 
improved detection and mitigation of AI corruption.

The committee will provide workshop proceedings—in brief and in a report 
summarizing the results from the consensus study.
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B
Public Meeting Agendas

APRIL 22, 2022 
KICK-OFF MEETING DAY 1

Executive Session

3:00–3:05 PM	 Welcome and Introductions

3:05–4:00 PM	 Bias and Conflict of Interest Discussion
	� Scott Weidman, Deputy Executive Director, Division on 

Engineering and Physical Sciences

Open Session

4:00–5:00 PM	 Sponsor Remarks
	� Major General Evan Dertien, Commander, Air Force 

Test Center
	� Colonel Keith Roessig, Vice Commander, Air Force Test 

Center
	 Air Force Test Center Technical Experts

5:00 PM	 Adjourn
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APRIL 25, 2022 
KICK-OFF MEETING DAY 2

Executive Session

11:00 AM–1:00 PM	 Bias and Conflict of Interest Discussion

JUNE 27, 2022 
DATA-GATHERING WORKSHOP, DAY 1

Room 208
The Keck Center, 500 Fifth Street, NW

Washington, DC 20001

11:00–11:15 AM	 Workshop Welcome and Introductions

11:15 AM–12:00 PM	� Speaker: Mr. Jacob Martinez, Technical Director, 47th 
Cyberspace Test Squadron, United States Air Force

12:00–12:45 PM	� Speaker: Mr. David Coppler, Technical Director, 46 Test 
Squadron, United States Air Force

12:45–1:15 PM	 Lunch Break

1:15–2:00 PM	� Speaker: Mr. Marshall Kendrick, 45th Test Squadron, 
United States Air Force

2:00–2:45 PM	� Speaker: Dr. Jane Pinelis, Chief, AI Assurance, Office of 
the Department of Defense Chief Digital and Artificial 
Intelligence Officer (CDAO)

2:45–3:15 PM	 Discussion and Day 1 Wrap-Up

3:15 PM	 Adjourn
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JUNE 28, 2022 
DATA-GATHERING WORKSHOP, DAY 2

Room 208
The Keck Center, 500 Fifth Street, NW

Washington, DC 20001

11:00–11:15 AM	 Welcome and Recap of Day 1

11:15 AM–12:00 PM	� Speaker: Dr. Chad Bieber, Director, T&E Operations, 
Joint AI Center, Johns Hopkins University Applied 
Physics Laboratory

12:00–12:30 PM	� Discussion: Workshop Day 1 and Future Committee 
Meetings

12:30–1:15 PM	 Lunch Break

1:15–2:00 PM	� Speaker: Olivia Brown, Technical Staff, AI Technology 
Group, MIT Lincoln Laboratory

2:00–2:45 PM	� Speaker: Dr. Michael Wellman, Richard H. Orenstein 
Division Chair of Computer Science and Engineering 
and Lynn A. Conway Collegiate Professor of Computer 
Science and Engineering, University of Michigan

2:45–3:00 PM	 Break

3:00–3:45 PM	� Speaker: Dr. Thomas Strat, President and CEO, DZYNE 
Technologies

3:45–4:30 PM	� Speaker: Jim Bellingham, Executive Director, Johns 
Hopkins Institute for Assured Autonomy

4:30–4:45 PM	 Break

4:45–5:30 PM	� Speaker: Dr. Matt Turek, Deputy Director Information 
Innovation Office
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5:30–6:15 PM	� Speaker: Dr. Nancy Cooke, Professor and Graduate Pro-
gram Chair in Human Systems Engineering, Polytechnic 
School, Arizona State University

6:15–6:30 PM	 Discussion and Day 2 Wrap-Up

6:30 PM	 Adjourn

JUNE 28, 2022 
DATA-GATHERING WORKSHOP, DAY 3

Room 208
The Keck Center, 500 Fifth Street, NW

Washington, DC 20001

11:00–11:05 AM	 Welcome and Recap of Day 2

11:05–11:50 AM	� Speaker: Dr. Bin Yu (NAS), Chancellor’s Professor in the 
Departments of Statistics and Electrical Engineering & 
Computer Sciences, University of California, Berkeley

11:50 AM–12:35 PM	� Speaker: Dr. Nathan VanHoudnos, Senior Machine 
Learning Research Scientist, Software Engineering 
Institute

12:35–1:15 PM	 Lunch Break

1:15–2:00 PM	� Speaker: Dr. Bruce Draper, Program Manager, Defense 
Advanced Research Projects Agency

2:00–2:45 PM	� Speaker: Mr. Ed Zelnio, Principal Research Physicist, Air 
Force Research Laboratory

2:45–3:00 PM	 Break

3:00–3:45 PM	� Speaker: Dr. Eileen Bjorkman, Executive Director, Air 
Force Test Center

3:45–4:30 PM	 Workshop Wrap-Up and Discussion

4:30 PM	 Adjourn
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AUGUST 23, 2022 
DATA-GATHERING MEETING #2

11:00–11:10 AM	 Welcome, Introductions, and Quick Updates

11:10 AM–12:10 PM	� Speaker: LCDR Joseph W. Geeseman, Program Manager, 
Smart Sensor, CDAO Algorithmic Warfare Division

12:10–12:45 PM	 Lunch Break

12:45–1:45 PM	� Speaker: Dr. Lori Westerkamp, Air Force Research 
Laboratory Sensors Directorate

1:45–2:00 PM	 Break

2:00–3:00 PM	 Speaker: Dr. John Richards, Sandia National Laboratories

3:00–4:30 PM	� Committee Discussion: Draft Report Outline, September 
Meeting, Site Visits, Writing Assignments, Fall Meeting 
Schedule

4:30 PM	 Adjourn

SEPTEMBER 28, 2022 
DATA-GATHERING MEETING #3, DAY 1

Open Session

11:00 AM–12:00 PM	� Speaker: Prof. Yolanda Gil, Senior Director for Major 
Strategic AI and Data Science Initiatives, Information 
Sciences Institute, University of Southern California

12:00–12:30 PM	 Lunch Break

12:30–1:30 PM	� Speaker: Professor Jeff Schneider, Research Professor, 
Carnegie Mellon University, Founding Member—Uber 
Advanced Technologies Group
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1:30–2:30 PM	� Speaker: Dr. Mitch Crosswait, Director of Operational 
Test and Evaluation Deputy Director of Net-Centric, 
Space, and Missile Defense Systems

2:30–2:45 PM	 Break

Closed Session

2:45–4:30 PM	 Committee Writing Session/Discussion

4:30 PM	 Adjourn

SEPTEMBER 29, 2022 
DATA-GATHERING MEETING #3, DAY 2

Open Session

11:00 AM–12:00 PM	 Speaker: Mr. Eric Nelson, CTO of Software, Morse Corp.

12:00–12:30 PM	 Lunch Break

12:30–1:30 PM	 Speaker: Mr. Neil Serebryany, Founder and CEO, CalypsoAI

1:30–1:45 PM	 Break

Closed Session

1:45–4:00 PM	 Committee Writing Session/Discussion

4:00 PM	 Adjourn

NOVEMBER 30, 2022 
DATA-GATHERING MEETING #4

1:00–2:00 PM	� Speaker: Dr. Riccardo Mariani, VP, Industry Safety, 
NVIDIA Italy

2:00–3:00 PM	 Committee Discussion, Planning, and Writing Session
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3:00–3:45 PM	� Speaker: Col. Tucker “Cinco” Hamilton, Chief of AI 
Test and Operations, Department of the Air Force Chief 
Data and AI Office & Commander, 96th Operations 
Group, Eglin Air Force Base

3:45–5:00 PM	� Committee Discussion, Planning, and Writing Session 
(continued)

5:00 PM	 Adjourn

DECEMBER 6, 2022 
DATA-GATHERING MEETING #5, DAY 1

1:00–1:45 PM	� Committee Discussion: Finalizing Writing Assignments, 
January Writing Meeting Planning, Discussion of the 
Outline and Draft Sections

1:45–2:45 PM	� Speaker: Dr. Nicholas Carlini, Research Scientist, Google 
Brain

2:45–3:00 PM	 Break

3:00–4:00 PM	� Speakers: Alex Kotran, Co-Founder and CEO, AI 
Education Project & Michael Kanaan, Chief of Staff of 
the U.S. Air Force Fellow at Harvard Kennedy School, AI 
Education Project Board Member

4:00 PM	 Adjourn

DECEMBER 7, 2022 
DATA-GATHERING MEETING #5, DAY 2

12:30–1:30 PM	� Speaker: Michael Cox, Vice President and Chief Architect, 
NVIDIA

1:30–1:45 PM	 Break

1:45–2:30 PM	 Committee Discussion, Planning, and Writing Session
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C
Committee Member 

Biographical Information

May Casterline, Co-Chair, is an image scientist and software developer with a back-
ground in satellite and airborne imaging systems. Her research interests include 
deep learning, hyperspectral and multispectral imaging, innovative applications 
of machine learning (ML) approaches to remote sensing data, multimodal data 
fusion, data workflow design, high-performance computing applications, and cre-
ative software solutions to challenging geospatial problems. She holds a PhD and a 
BS in imaging science from the Rochester Institute of Technology, with a focus on 
remote sensing. In industry, Dr. Casterline has acted as a product owner, technical 
lead, lead developer, and image scientist on both research initiatives and develop-
ment projects. She joined the NVIDIA federal solution architecture team in 2017 
focusing on deep learning and artificial intelligence (AI) applications.

Thomas A. Longstaff, Co-Chair, is the chief technology officer (CTO) of the 
Software Engineering Institute (SEI) at Carnegie Mellon University. As CTO, 
Dr. Longstaff is responsible for formulating a technical strategy and leading the 
funded research program of the institute based on current and predicted future 
trends in technology, government, and industry. Before joining the SEI as CTO 
in 2018, he was a program manager and principal cybersecurity strategist for the 
Asymmetric Operations Sector of the Johns Hopkins University Applied Physics 
Laboratory (JHU APL), where he led projects on behalf of the U.S. government, 
including nuclear command and control, automated incident response, technol-
ogy transition of cyber research and development (R&D), information assurance, 
intelligence, and global information networks. Dr. Longstaff also was the chair of 

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

T e s t  a n d  E v a l u a t i o n  C h a l l e n g e s  i n  AI  - E n a b l e d  S y s t e m s 150

the Computer Science, Cybersecurity, and Information Systems Engineering Pro-
grams and the co-chair of Data Science in the Whiting School at JHU. His academic 
publications span topics such as malware analysis, information survivability, insider 
threat, intruder modeling, and intrusion detection. He maintains an active role in 
the information assurance community and regularly advises organizations on the 
future of network threat and information assurance. Dr. Longstaff is an editor for 
Computers and Security. He has previously served as the associate editor for IEEE 
Security and Privacy and general chair for the New Security Paradigms Workshop 
and Homeland Security Technology Conference and numerous other program 
and advisory committees. Prior to joining the staff at JHU APL, Dr. Longstaff 
was the deputy director for technology for the CERT Division at the SEI. In his 
15-year tenure at the SEI CERT Division, he helped create many of the projects 
and centers that made the program an internationally recognized network security 
organization. His work included assisting the Department of Homeland Security 
and other agencies to use response and vulnerability data to define and direct a 
research and operations program in analysis and prediction of network security 
and cyber terrorism events. Dr. Longstaff received a bachelor’s degree in physics 
and mathematics from Boston University and a master’s degree in applied science 
and a PhD in computer science from the University of California, Davis.

Craig R. Baker is the president of Baker Development Group, LLC, a consulting, 
leadership, and teaching company. He is a trusted executive leader widely known 
as a strategic planner and executor of large, important, highly visible projects and 
products to mitigate risks. Mr. Baker retired from the U.S. Air Force as a Brigadier 
General in July 2021. He graduated from the U.S. Military Academy at West Point 
in 1992, was a command combat test pilot, and instructed at the U.S. Air Force 
Fighter Weapons School (“Top Gun”). Mr. Baker commanded at both the squadron 
and wing levels. Additionally, he was the technical director GM/test program man-
ager of the 59th Test and Evaluation Squadron achieving $500 million in savings 
cultivated and lives saved by creating and establishing an innovative process and 
software program that required 60 percent fewer assets and personnel; and met 
60 percent of worldwide objectives in developing and integrating a congressionally 
directed fleet capability while delivering a historical first milestone highlighted to 
the enterprise president weekly. Mr. Baker led multi-service weapons assessment 
teams into Iraq and Afghanistan after OIF and OEF, which resulted in revolution-
ary software program and new weapon developments. He earned two MS degrees 
in strategic intelligence and strategic studies.

Robert A. Bond, prior to his appointment as principal staff, served for 5 years 
as the CTO at the Massachusetts Institute of Technology Lincoln Laboratory 
(MIT LL). He was formerly the associate head of the Intelligence, Surveillance, 

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

151A p p e n d i x  C

Reconnaissance and Tactical Systems Division. In his 42-year career, Mr. Bond 
has led research initiatives in very-large-scale integrated (VLSI) circuits, soft-
ware technology, parallel processors, adaptive and nonlinear signal processing, 
AI, C2ISR systems, and big-data analytics. He joined the MIT LL in 1987 and 
led the software and integration activities for the Radar Surveillance Technology 
Experimental Radar. In the 1990s, Mr. Bond conducted seminal studies on the 
use of massively parallel processors (MPP) for real-time signal processing. He 
then pioneered the development of a custom VLSI processor and a 1,000-node 
MPP for radar space-time adaptive processing. Mr. Bond led the development 
of a middleware technology for portable and scalable parallel signal processors 
that evolved into the Parallel Vector Tile Optimized Library (PVTOL), which 
won an R&D 100 award. In 2003, he received the MIT LL’s prestigious Technical 
Excellence Award, for his “technical vision and leadership in the application of 
high-performance embedded processing architectures to real-time digital signal 
processing systems.” Since 2015, Mr. Bond has led the MIT LL’s strategic initia-
tives in AI and autonomous systems. As the CTO, he oversaw and funded the 
applied research portfolios in these areas. In 2018, Mr. Bond founded the Recent 
Advances in AI for National Security workshop. He is currently the MIT LL’s 
program manager for the Air Force-MIT AI Accelerator program. Mr. Bond has 
a BS (honors) in physics, is a member of the Association for the Advancement of 
Artificial Intelligence (AAAI), and a senior member of the Institute of Electrical 
and Electronics Engineers (IEEE).

Rama Chellappa is a Bloomberg Distinguished Professor in the Departments 
of Electrical and Computer Engineering (Whiting School of Engineering) and 
Biomedical Engineering (School of Medicine) at JHU. At JHU, he is also affiliated 
with the Center for Imaging Sciences, the Center for Language and Speech Process-
ing, the Institute for Assured Autonomy, and the Mathematical Institute for Data 
Science. Dr. Chellappa holds a non-tenure position as a College Park Professor in 
the Electrical and Computer Engineering (ECE) department at the University of 
Maryland (UMD). From 1981 to 1991, he was an assistant and associate profes-
sor in the Department of EE-Systems at University of Southern California. He 
received an MSEE (1978) and a PhD (1981) in electrical engineering from Purdue 
University. His current research interests span many areas in computer vision, pat-
tern recognition, AI, and ML. Dr. Chellappa is an elected member of the National 
Academy of Engineering (NAE). He received the 2023 Distinguished Career Award 
from the Washington Academy of Sciences, the 2020 Jack S. Kilby Medal for Signal 
Processing from the IEEE, and the K.S. Fu Prize from the International Association 
of Pattern Recognition (IAPR). Additionally, Dr. Chellappa is a recipient of the 
Society, Technical Achievement and Meritorious Service Awards from the IEEE 
Signal Processing Society, the Technical Achievement and Meritorious Service 
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Awards from the IEEE Computer Society, and the inaugural Leadership Award 
from the IEEE Biometrics Council. At UMD, he received numerous college- and 
university-level recognitions for research, teaching, innovation, and mentoring 
of undergraduate students. He was recognized as an Outstanding ECE by Pur-
due University and as a Distinguished Alumni by the Indian Institute of Science. 
Dr. Chellappa is a Golden Core Member of the IEEE Computer Society and has 
served as a Distinguished Lecturer of the IEEE Signal Processing Society and as the 
president of IEEE Biometrics Council. He is a fellow of AAAI, the American As-
sociation for the Advancement of Science (AAAS), the Association for Computing 
Machinery (ACM), the American Institute for Medical and Biological Engineering, 
IAPR, IEEE, the Optical Society of America, and the National Academy of Inven-
tors and holds nine patents.

Melvin Greer is an Intel Fellow and the chief data scientist at the Americas, Intel 
Corporation. He is responsible for building Intel’s data science platform through 
graph analytics, ML, and cognitive computing to accelerate transformation of 
data into a strategic asset for public sector and commercial enterprises. His sys-
tems and software engineering experience has resulted in patented inventions in 
cloud computing, synthetic biology, and Internet of Things bio-sensors for edge 
analytics. Dr. Greer functions as a principal investigator in advanced research 
studies, including nanotechnology, additive manufacturing, and gamification. He 
significantly advances the body of knowledge in basic research and critical, highly 
advanced engineering, and scientific disciplines. Dr. Greer is a member of the 
AAAS and serves on the board of directors for the National Academies of Sciences, 
Engineering, and Medicine. He has been appointed to senior advisor and fellow 
at the Federal Bureau of Investigation (FBI) IT and Data Division and is charged 
with acceleration of the FBI mission by supporting appropriate data collection, 
data analytics, discovery, and visualization via advanced data science and AI tech-
niques. Dr. Greer is one of the 2018 LinkedIn Top 10 Voices in data science and 
analytics. He also received the Washington Exec Inaugural Pinnacle Award as the 
2018 Artificial Intelligence Executive of the Year, and received the 2017 Black Data 
Processing Associates Lifetime Achievement Award and the 2012 Black Engineer of 
the Year Awards Technologist of the Year Award, which recognized his outstanding 
technical contributions that have had a material impact and high value to society 
as a whole. Dr. Greer has been appointed a fellow of the National Cybersecurity 
Institute where he assists government, industry, military, and academic sectors on 
meeting the challenges in cyber security policy, technology and education. He is 
professor for the MS of science in data science program at Southern Methodist 
University and adjunct faculty, advanced academic program at JHU, where he 
teaches the MS course on practical applications of AI. In addition to his profes-
sional and investment roles, Dr. Greer is the founder and managing director of the 

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

153A p p e n d i x  C

Greer Institute for Leadership and Innovation, focused on research and deployment 
of a 21st-century leadership model. He is a frequent speaker at conferences and 
universities and is an accomplished author; his fifth book, Practical Cloud Security 
A Cross Industry View, is his most recently published book. Dr. Greer is a board of 
director member at the National GEM Consortium where he oversees and aligns its 
strategic direction, educational policy, finances, and operations with the mission of 
the fellowship program. As a popular educator and board member at a number of 
Historical Black Colleges and Universities, Dr. Greer is leading science, technology, 
mathematics, and engineering research initiatives, directly trying to shape a more 
diverse generation of up-and-coming technical talent.

Tamara G. Kolda is an independent mathematical consultant under the auspices 
of her company MathSci.ai based in California. She is also a distinguished visiting 
professor in the Department of Industrial Engineering and Management Science at 
Northwestern University. From 1999 to 2021, Dr. Kolda was a researcher at Sandia 
National Laboratories in Livermore, California. She specializes in mathematical 
algorithms and computation methods for tensor decompositions, tensor eigen-
values, graph algorithms, randomized algorithms, ML, network science, numerical 
optimization, and distributed and parallel computing. Dr. Kolda is a member of 
the NAE, a fellow of the Society for Industrial and Applied Mathematics (SIAM), 
and a fellow of the ACM. She holds a PhD in applied mathematics from UMD.

Robin R. Murphy is the Raytheon Professor of Computer Science and Engineering 
at Texas A&M University and a director of the Center for Robot-Assisted Search 
and Rescue. Her research focuses on AI, robotics, and human–robot interaction 
for emergency management. Dr. Murphy has deployed ground, aerial, and marine 
robots to over 30 disasters in five countries including the 9/11 World Trade Center, 
Fukushima, Hurricane Harvey, and the Surfside collapse. She is an AAAS, ACM, 
and IEEE fellow, a TED speaker, and her contributions to robotics have been rec-
ognized with the ACM Eugene L. Lawler Award for Humanitarian Contributions 
and a United States Air Force Exemplary Civilian Service Award medal. She holds a 
PhD (1992) and an MS (1989) in computer science and a BME (1980) in mechani-
cal engineering from the Georgia Institute of Technology.

David S. Rosenblum is the Planning Research Corporation Professor and the 
chair of the Department of Computer Science at George Mason University. Since 
receiving his PhD from Stanford University, Dr. Rosenblum has held positions as 
a member of the technical staff at AT&T Bell Laboratories (Murray Hill); associ-
ate professor and associate chair at the University of California, Irvine; CTO and 
principal architect at PreCache, Inc.; professor of software systems at University 
College London; and Provost’s Chair Professor, dean of the School of Computing, 
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and founding director of the NUS-Singtel Cyber Security R&D Lab at National 
University of Singapore. He has made significant contributions to a broad array 
of research problem areas in computer science, including software engineering, 
distributed systems, ubiquitous computing, and ML. Among his most highly cited 
research are works on Internet-scale publish/subscribe computing; assertion pro-
cessing techniques and regression testing methods for software engineering; and 
ML and deep learning techniques for recommendation systems, activity recogni-
tion, and social media analytics. Dr. Rosenblum is a fellow of the ACM and IEEE 
and has received two 10-year, test-of-time awards, including the International 
Conference on Software Engineering (ICSE) 2002 Most Influential Paper Award 
for his ICSE 1992 paper on assertion processing, and the inaugural 2008 ACM 
SIGSOFT Impact Paper Award for his Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering 1997 paper 
on Internet-scale event observation and notification (co-authored with Alexander 
L. Wolf). He also received the 2018 ACM SIGSOFT Distinguished Service Award.

John (Jack) N.T. Shanahan retired from the United States Air Force in 2020 after a 
36-year military career. In his final assignment, he served as the inaugural director 
of the Department of Defense (DoD) Joint Artificial Center. Mr. Shanahan served 
in a variety of operational and staff positions in various fields, including flying, 
intelligence, policy, and command and control. He established and led DoD’s Path-
finder AI fielding program (Project Maven) and is an adjunct senior fellow with 
the Technology and National Security Program at the Center for a New American 
Security. Mr. Shanahan is a member of the IEEE Standards Association Autono-
mous Weapons Systems Assurance and Safety Subcommittee.

Rebecca Willett is a professor of statistics and computer science at The University 
of Chicago. Her research is focused on ML, signal processing, and large-scale data 
science. Dr. Willett received the National Science Foundation (NSF) CAREER 
Award in 2007, was a member of the Defense Advanced Research Projects Agency 
Computer Science Study Group, received an Air Force Office of Scientific Research 
Young Investigator Program award in 2010, was named a fellow of the SIAM in 
2021, and was named a fellow of the IEEE in 2022. She is a co-principal investigator 
and member of the executive committee for the Institute for the Foundations of 
Data Science, helps direct the Air Force Research Laboratory University Center of 
Excellence on Machine Learning, and currently leads The University of Chicago’s 
AI+Science Initiative. In addition, Dr. Willett serves on advisory committees for 
the NSF’s Institute for Mathematical and Statistical Innovation, the AI for Sci-
ence Committee for the Department of Energy’s Advanced Scientific Computing 
Research program, the Sandia National Laboratories Computing and Informa-
tion Sciences Program, and the University of Tokyo Institute for AI and Beyond. 
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She completed her PhD in electrical and computer engineering at Rice University 
(2005) and was an assistant and then tenured associate professor of electrical and 
computer engineering at Duke University (2005–2013). Additionally, Dr. Willett 
was an associate professor of electrical and computer engineering, the Harvey D. 
Spangler Faculty Scholar, and a fellow of the Wisconsin Institutes for Discovery at 
the University of Wisconsin–Madison (2013–2018).
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D
Acronyms and Abbreviations

AAIT	 Autonomy and Artificial Intelligence Test
ABMS	 Advanced Battle Management System
ACC	 Air Combat Command
ACE	 Air Combat Evolution
ADAX	 Autonomy, Data, and AI Experimentation
AEDC	 Arnold Engineering Development Complex
AEIS	 Artificial Intelligence Enabled Systems
AF DCGS	 Air Force Distributed Common Ground Station
AFB	 Air Force Base
AFIT	 Air Force Institute of Technology
AFLCMC	 Air Force Life Cycle Management Center
AFMC	 Air Force Materiel Command
AFOTEC	 Air Force Operational Test and Evaluation Center
AFPC	 Air Force Personnel Center
AFRL	 Air Force Research Laboratory
AFSC	 Air Force Specialty Code
AFTC	 Air Force Test Center
AI	 artificial intelligence
AI4NSL	 Artificial Intelligence for National Security Leaders
AIA	 AI Accelerator
AICI	 Artificial Intelligence Criticality Indicator
AIOps	 Artificial Intelligence for IT Operations
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API	 Application Programming Interface
APIGEE	 Automated Pipeline for Imagery Geospatial Enhancement and 

Enrichment
ASIL	 Automotive Safety Integrity Level
ATR	 automatic target recognition
AWCFT	 Algorithmic Warfare Cross-Functional Team
AWS	 Amazon Web Services

BPA	 bulk purchase agreement

C2	 Command and Control
C2BMC	 Command, Control, Battle Management, Communications
C4I	 Command, Control, Communications, Computers, and 

Intelligence
C4ISR	 Command, Control, Communications, Computers, Intelligence, 

Surveillance and Reconnaissance
CAC	 common access card
CBA	 capabilities-based analysis
CCA	 Collaborative Combat Aircraft
CCF	 common cause failure
CDAO	 Chief Digital and AI Office (OSD); Chief Data and AI Office  

(DAF)
CDC	 Capability Development Council
CET	 continuing education and training
CEU	 continuing education unit
CI/CD	 continuous integration/continuous delivery
CIP	 critical intelligence parameter
CLSA	 Computer Language Self-Assessment
CMCC	 Common Mission Control Center
CNN	 Convolutional Neural Network
CoI	 community of interest
CONOPS	 concept of operations
CR	 certifiable robustness
CSAF	 Chief of Staff of the Air Force
CTP	 critical technical parameter
CV	 computer vision
CXO	 chief experience officer

DAF	 Department of Air Force
DARPA	 Defense Advanced Research Projects Agency
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DASD(DT&E)	 Deputy Assistant Secretary of Defense for Developmental Test 
and Evaluation

DAU	 Defense Acquisition University
DDB	 Dynamic Database
DevOps	 development operations
DevSecOps	 development, security, and operations
DGS	 Defense Geospatial Services
DIE	 Defense Intelligence Enterprise
DL	 deep learning
DMP	 data management pipeline
DNN	 deep neural networks
DoD	 Department of Defense
DOT&E	 Director of Operational Test and Evaluation
DOTmLPF-P	 Doctrine, Organization, Training, materiel, Leadership, 

Personnel, Facilities, Policy
DRL	 deep reinforcement learning
DT	 developmental test
DT&E	 developmental test and evaluation
DTO	 Digital Transformation Office

ELINT	 electronic intelligence
EO	 electro-optical
EOB	 Electronic Order of Battle
EW	 electronic warfare
EWIR	 electronic warfare integrated reprogramming

FAA	 Federal Aviation Administration
FERET	 Face Recognition Technology
FFRDC	 federally funded research and development center
FM	 foundation model
FMV	 full-motion video
FOC	 fully operational capability
FOT&E	 follow-on operational T&E
FPGA	 field programmable gate array

GAO	 Government Accountability Office
GeoINT	 geospatial intelligence
GOTS	 government off-the-shelf
GPU	 graphics processing unit
GSWR	 Global Synthetic Weather Radar

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

159A p p e n d i x  D

HAI	 human-AI
HARA	 Hazard and Risk Assessment
HMC	 human-machine cognitive collaboration
HMT	 human-machine team
HRL	 human readiness level
HSI	 human-systems integration
HW	 hardware

IDA	 Institute for Defense Analyses
IEC	 International Electrotechnical Commission
ILSVRC	 ImageNet Large Scale Visual Recognition Challenge
IML	 informed machine learning
IOC	 initial operating capability
IOT&E	 initial operational test and evaluation
IP	 intellectual property
IR	 infrared
ISO	 International Organization for Standardization
ISR	 intelligence, surveillance, and reconnaissance
IT	 information technology

JAIC	 Joint Artificial Intelligence Center
JATIC	 Joint Artificial Intelligence Test Infrastructure Capability
JCIDS	 Joint Capabilities Integration and Development System
JEON	 joint emergent operational need
JHU APL	 Johns Hopkins University Applied Physics Laboratory
JROC	 Joint Requirements Oversight Council
JSE	 joint simulation environment
JUON	 joint urgent operational need

KPI	 key performance indicator
KPP	 key performance parameter
KSA	 key system attribute

LAWS	 lethal autonomous weapon system
LFT&E	 live-fire test and evaluation
LL	 Lincoln Laboratory
LLM	 large language model
LOR	 level of rigor
LSTM	 long-short-time memory
LVC	 live-virtual-constructive
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M&S	 modeling and simulation
MAGE	 Machine Assisted GeoINT Exploitation
MAIS	 major automated information system
MDA	 Missile Defense Agency
MDAP	 major defense acquisition program
MIT	 Massachusetts Institute of Technology
ML	 machine learning
MLOps	 machine learning operations
MRTFB	 Major Range and Test Facility Base
MSTAR	 Moving and Stationary Target Acquisition and Recognition
MTA	 middle tier of acquisition
MVP	 minimal viable product

NAIIO	 National AI Initiative Office
NAITIC	 National Artificial Intelligence Test and Evaluation Infrastructure 

Capability
NDAA	 National Defense Authorization Act
NeRF	 neural radiance field
NFS	 NextGen Federal Systems
NGAD	 next generation air dominance
NIST	 National Institute of Standards and Technology
NLP	 natural language processing
NPS	 Naval Postgraduate School
NR-KPP	 net ready key performance parameter
NSCAI	 National Security Commission on AI

O&M	 operations and maintenance
OCR	 operational change request
ODD	 operational design domain
ODNI	 Office of the Director of National Intelligence
OFP-CTF	 Operational Flight Program-Combined Test Force
OOD	 out-of-distribution
OSD	 Office of the Secretary of Defense
OT	 operational test
OT&E	 operational test and evaluation
OTA	 Operational Test Agency
OUSD(R&E)	 Office of the Under Secretary of Defense (Research and Engineering)

PaaS	 platform-as-a-service
PED	 processing, exploitation, and dissemination
PEO	 program executive officer
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PII	 personally identifiable information
PMO	 Program Management Office

QU	 quantifiable uncertainty

R&D	 research and development
R&E	 research and engineering
RADIUS	 Research and Development for Image Understanding Systems
RAI	 responsible AI
RAIDEN	 Robust AI Development Environment
RDT&E	 research, development, test, and evaluation
RFI	 request for information
RFP	 request for proposal
RL	 reinforcement learning
RLHF	 reinforcement learning with human feedback
RMF	 Risk Management Framework
RNN	 recurrent neural network

SAR	 synthetic aperture radar
SCSP	 Special Competitive Studies Project
SDN	 software-defined networking
SDPE	 strategic development planning and experimentation
SEI	 special experience identifier
SME	 subject-matter expert
SPO	 system program office
SWAP	 size, weight, and power

T&E	 test and evaluation
TEMP	 T&E Master Plan
TEVV	 Test, Evaluation, Verification, and Validation
TL	 transfer learning
TPS	 Test Pilot School
TQD	 training-quality data
TRL	 technology readiness level
TRMC	 Test Resource Management Center
TW	 Test Wing

UARC	 University-Affiliated Research Center
UAS	 unmanned aerial system
UGV	 uncrewed ground vehicle
UI/UX	 user interface/user experience
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UON	 urgent operational need
USAFWC	 United States Air Force Warfare Center
USC	 University of Southern California
USDI	 Under Secretary for Defense for Intelligence

V&V	 verification and validation
VENOM	 Viper Experimentation and Next-Gen Operations Model
VISTA	 Variable In-Flight Simulator Aircraft
VOC	 Visual Object Classes
VTTC	 Virtual Test and Training Center

ZT	 zero trust

http://nap.nationalacademies.org/27092


Test and Evaluation Challenges in Artificial Intelligence-Enabled Systems for the Department of the Air Force

Copyright National Academy of Sciences. All rights reserved.

163

E
Testing, Evaluating,  

and Assessing Artificial 
Intelligence–Enabled Systems 

Under Operational Conditions 
for the Department of the 
Air Force: Proceedings of 

a Workshop—in Brief
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Proceedings of a Workshop—in Brief

Testing, Evaluating, and Assessing Artificial 
Intelligence–Enabled Systems Under 
Operational Conditions for the Department of 
the Air Force
Proceedings of a Workshop—in Brief

On June 28–30, 2022, the National Academies of 

Sciences, Engineering, and Medicine’s Air Force Studies 

Board (AFSB) convened a hybrid workshop in support of 

its consensus study on testing, evaluating, and assessing 

artificial intelligence (AI)–enabled systems under 

operational conditions. The goals of the study are as 

follows:

1. Evaluate and contrast current testing and assessment 

methods employed by the Department of the Air 

Force and in commercial industry.

2. Consider examples of AI corruption under operational 

conditions and against malicious cyber-attacks.

3. Recommend promising areas of science and 

technology that may lead to improved detection and 

mitigation of AI corruption.

The information summarized in this Proceedings of a 

Workshop—in Brief reflects the opinions of individual 

workshop participants. It should not be viewed as a 

consensus of the workshop’s participants, the AFSB, 

or the National Academies. The workshop planning 

committee heard from a wide range of experts from 

government, industry, and academia to help inform them 

about the Air Force Test Center’s (AFTC’s) ability to test, 

evaluate, and assess AI-enabled systems. The purpose of 

this workshop was to hear about how the U.S. Air Force 

(USAF) currently approaches AI testing and evaluation 

(T&E), industry approaches to testing AI, and challenges 

to AI testing. Exploration into other topic areas from the 

statement of task will be done in future data-gathering 

meetings by the workshop planning committee.

47TH CYBER TEST SQUADRON OVERVIEW

The first speaker was Jacob Martinez (47th Cyberspace 

Test Squadron [CTS]). Martinez began by giving a 

brief overview of the 47th CTS, which is part of the 

AFTC, and its two primary mission areas: providing 

test environments for hardware and software type 

cloud environments and conducting cybersecurity 

and resiliency activities for the Air Force’s kinetic and 

non-kinetic weapons. In essence, the 47th CTS looks 

at not only the physical capabilities but also software 

capabilities. Martinez also noted that the 47th CTS is 

primarily a “fee for service” organization. He explained 

that the squadron relies on normal, agile, and continuous 

methods of T&E, with the intent to focus on continuous 

T&E in the future. He also stated that the 47th CTS is 

primarily a developmental testing (DT) organization.
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does have a mission in which they do cyber resilience 

testing. The point was also made that resiliency 

testing will, in Martinez’s opinion, probably become 

integrated with future AI/ML requirements as they may 

develop. The only issue is that acquiring and funding 

technological concepts takes a long time. Martinez has 

usually seen, within the Department of Defense (DoD), a 

2- to 3-year gap between the time it takes for a concept 

to be accepted, funded, and explored.

46TH TEST SQUADRON “KILL CHAIN DEVELOPMENTAL TEST” 

Dave Coppler (46th Test Squadron [TS]) talked to the 

workshop planning committee about the 46th TS, a 

subordinate to the AFTC’s 96th Test Wing, and the 

importance of DT. He noted the squadron’s importance 

in considering all stages of the “kill cycle,” also using 

the term “kill chain DT.” He gave an overview of 

the organization’s chain of command and mission 

statements. One of the squadron’s primary focuses is on 

the testing of kill chain–relevant systems.

Coppler transitioned to talking about DT and why it is 

essential. He stated that DT is necessary government 

work that helps to accelerate acquisition by leveraging 

unique expertise, facilities, equipment, and capabilities. 

The 46th TS supports the entire system life cycle to 

ensure that upgraded systems do not break any of the 

system’s initial capabilities. They can also provide 

upgrades to the software with new capabilities and 

ensure that they work properly. They also provide highly 

qualified experts with proper clearances to engage 

customers on any level and provide the necessary 

support. Coppler also discussed the importance of the 

test environment that the 46th TS provides for DT.

Coppler fielded questions from the workshop planning 

committee. Longstaff asked if, within the simulated 

emulated systems that the 46th TS is already using, it 

is considering incorporating more AI systems behavior 

into its simulated systems (e.g., the F-15E, etc.). Coppler 

responded that until the F-15Es, F-22s, and F-35s start 

incorporating AI into their platforms, the TS has no 

desire to do that. Longstaff followed up by asking if 

the TS is thinking about doing any automated AI-based 

behavior within the hardware for testing. Coppler stated 

The discussion shifted toward Unified Platform (UP), a 

project that aims to integrate cyber capabilities, systems, 

infrastructure, and data analytics while allowing cyber 

operators to conduct numerous tasks across the full 

spectrum of cyber operations. It is also one of the five 

elements of the Joint Cyber Warfare Architecture. The 

47th CTS worked on this project and looked at several 

vendors to help support the application of AI/machine 

learning (ML) in UP. It determined that investments 

to begin integrating AI/ML into UP are estimated to be 

anywhere from $75,000 to $255,000 per year in licensing 

costs alone.

Thomas A. Longstaff (Software Engineering Institute; 

workshop planning committee co-chair) was curious 

if, within UP especially, Martinez’s group is focusing 

more on the tools and techniques within UP or on what 

is within the development, security, and operations 

(DevSecOps) chain on the testing side from the software 

factory. Martinez responded that the 47th CTS is tied into 

the DevSecOps pipeline process. Discussion then ensued 

about ownership and responsibility. Martinez stated that, 

ultimately, the end user is the one who assumes the risk 

and takes responsibility. Rama Chellappa (Johns Hopkins 

University; workshop planning committee member) 

asked for an explanation of how they currently recruit 

people who can be a step ahead and fully understand 

the implications of the system design, AI, and so on. 

Martinez responded that industry is paying individuals, 

with that level of expertise, more than what he can 

provide. Instead of using high salaries to entice talent, 

he suggested using the PALACE Acquire (PAQ) Internship 

Program.1 Martinez stated, “by embracing and offering 

training positions and PAQ internship positions, we 

not only get the latest training from academia, but we 

also can hold those individuals for 2 or 3 years and 

invest in them, in their education, and they invest in us 

by providing us new techniques and capability.” This 

policy is not official, but an idea proposed by Martinez, 

he clarified. Longstaff asked a final question regarding 

applying resilience testing to things that may have 

adaptive behavior. Martinez responded that the 47th CTS  

 
1 The PAQ Internship Program is a paid, full-time, 2- to 3-year 
USAF program for graduates interested in a number of disciplines. 
More information can be found at the AFCS website, at https://
afciviliancareers.com/recentgraduates.
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Kendrick mentioned that he has people meeting with the 

developers to ensure that the 45th TS understands the 

developers’ test methodology and their data. The goal is 

to see how they can extend the test data and ensure that 

it covers all of the operational boundaries. 

AI ASSURANCE

Jane Pinelis (Office of the DoD Chief Digital and Artificial 

Intelligence Officer) led the final presentation of the first 

day. She opened by defining AI assurance. She described 

AI assurance as the combination of T&E and responsible 

AI. She explained that the AI assurance process provides 

arguments and evidence to establish trustworthiness and 

justified confidence. She defined the goal as providing 

stakeholders with “justified confidence” that DoD 

AI-enabled systems meet requirements and support 

missions through ethical action. Stakeholders include the 

warfighter, commander, program manager, regulators, 

taxpayers, and others. She also talked extensively about 

the existing partnerships that the Chief Digital and 

Artificial Intelligence Office (CDAO) has and the different 

support it provides to these stakeholders.

Pinelis moved on to talk about the AI T&E process. The 

first step, algorithmic testing, is when reserved test 

data are used against a vendor’s model in a laboratory 

environment. Next, the model tests four areas: 

integrity testing, confidence assessment, robustness, 

and resilience. Integrity testing shows the model’s 

effectiveness using metrics such as the number of 

false positives, F1 score, precision recall, and other 

data points. Pinelis also talked about a new method 

called calibrating “model competency,” where someone 

uses trained data on a specific data set deployed in an 

operational environment. She noted the importance 

of the model competency step in assessing “domain 

adaptation,” or the model’s ability to perform in 

different operational environments at the same level as 

observed in the bench testing environment. Confidence 

assessment calculates the distance between a data point 

and everything on which the model has previously been 

trained. Pinelis mentioned that this type of test helps 

with things such as label prioritization. She then talked 

about robustness—specifically, natural perturbations—

and how they are transitioning a tool from the Test 

that he thinks that is way off in the future. The TS is 

still in the very early stages of developing the art of the 

possible. Chellappa asked about annotation and who does 

it. Coppler responded that the 46th TS does provide the 

truth data for physical things in real time, but it is not 

involved when the AI, for example, takes a deeper look at 

how data are being generated and used.

AI DT FOR COMMAND AND CONTROL

The next speaker, Marshall Kendrick (Air Operations 

Center Combined Test Force), opened by saying that the 

45th TS is just getting started in the AI business. He 

then talked about the different efforts that the 45th TS is 

undertaking, many of which are in the big data/algorithm 

stage. In the future, he noted that most of the efforts 

have the potential to move into full AI/ML capabilities. 

Last, Kendrick posed two questions that his organization 

has been tracking for the past few years: how to test AI 

and how to use AI to test and test better. 

Kendrick talked about some of the squadron-level flight 

programs his organization is involved in, such as Air 

Ops Command and Control (C2), a space flight that uses 

DoD’s Kobayashi Maru C2 program, and other programs. 

He also discussed the need for real-time data processing, 

as everything is constantly changing (potential threats, 

environments, etc.). AI can assist in this effort, 

particularly with the Advanced Battle Management 

System (ABMS) and the Joint All-Domain Command 

and Control (JADC2) vision. Kendrick then talked about 

ongoing efforts within the 45th TS. Lt. Gen. (Ret.) John 

N. Shanahan (USAF; workshop planning committee 

member) asked if the 45th TS would play a role in 

helping to develop some of the C2 capabilities that the Air 

Force is working on. Kendrick responded that they could 

absolutely play a role, particularly on the software side. 

Kendrick and Shanahan also discussed the operator’s role 

throughout the test process, the need to identify risk, and 

who accepts the risk. 

Kendrick also discussed other ongoing efforts, such as 

cloud-based C2. He explained that this effort comes 

from the Air Force’s Rapid Capabilities Office as part 

of the ABMS work. They have already built the test 

data sets and are working directly with developers. 
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best practices, cloud-native test harnesses, a T&E bulk 

purchasing agreement, T&E tools, test products, and an 

AI Red Teaming handbook, among others). She ended 

her presentation by briefly discussing the different 

challenges of T&E and responsible AI. Longstaff asked 

how industry best practices would interact with a newly 

established T&E factory.2 Pinelis responded that they 

would absolutely continue to get industry’s tools and 

host them in the factory. She also stated that they try to 

keep the CDAO’s tools available to industry for items they 

build for the CDAO, but they do not share the test data. 

However, some tools are ones that the CDAO does not 

want widely advertised, for national security purposes. 

Discussion took place about how there are lessons to 

be learned from the private sector’s safety community 

for using AI in safety systems. Chellappa asked about 

domain adaptation and how Pinelis’s group will tackle 

it. Pinelis responded that they will do their best to train 

the system with the data that they have but that a lot of 

emphasis should be placed on learning after the system 

is fielded. She also talked about privacy and how data 

transformation and governance can be significant in 

keeping data useful while ensuring that identity is not 

recoverable. Last, Shanahan asked about the cultural 

shift between the traditional developmental testing/

operational testing and how that is coming along. Pinelis 

responded that integrative testing had been discussed for 

a long time but had not yet been implemented. Shanahan 

also touched on an AI mishap database and whether any 

thought had been put into that. Pinelis affirmed that they 

had thought about that and are establishing a database 

for responsible AI that will be a repository not just for 

incidents but also for tools and data. 

DAY 1: WORKSHOP PLANNING COMMITTEE DISCUSSION

May Casterline (NVIDIA; workshop planning committee 

co-chair) raised a go-back question to Kendrick on 

whether or not the testing rigor that Pinelis described in 

her presentation was captured in their requirements.  

Kendrick responded that he has assessed whether rigor  

 
2 A T&E factory is a broad set of tools to empower non-experts in DoD 
to test a model when it arrives as a black box (i.e., when the model’s 
inner workings are difficult to understand). K. Foy, 2022, “Graph 
Exploitation Symposium Emphasizes Responsible Artificial Intelligence,” 
Massachusetts Institute of Technology, https://www.ll.mit.edu/news/
graph-exploitation-symposium-emphasizes-responsible-artificial-
intelligence.

Research Management Center that will help identify 

edge cases in a test set. Resilience was the final test, 

where they specifically focused on adversarial action and 

whether it comes through adversarial AI or cyber. It also 

measures the data set’s ability to diagnose and recover 

from those attacks. 

The second step is system integration, Pinelis said. This 

measures how well a model performs when plugged into 

a legacy system not intended to interact with AI. The 

key things that the CDAO looks for are functionality, 

reliability, interoperability, compatibility, and security. 

The third step Pinelis described is human–system 

integration (HSI). This step involves inserting a human 

in the loop—that is, when a model is mounted to a 

platform and works. They tied the observe, orient, decide, 

act loop to DoD AI ethical principles to describe the HSI 

framework. She emphasized that human interactions 

with machines need to be maximally informative.

The final step is an operational test. Pinelis described 

this as both the easiest and the most challenging step. 

It is the toughest because, in her opinion, operationally 

testing AI-enabled systems, particularly autonomous 

ones, is very difficult. It is also the easiest because 

the CDAO always gets to collaborate with somebody 

when doing it. She then stated that the theory and 

methods behind operational testing are extraordinarily 

well developed and established. With AI, things have 

changed slightly. Tactical testing is an important part 

of the culture shift that avoids doing one big test at 

the end of the process and instead focuses on doing 

smaller but more frequent tests in multiple contexts and 

environments. There is also a push to evaluate the quality 

of decision making as performance. This attempts to 

evaluate the quality of decision making. The final point 

focused on the idea that one cannot test for everything 

and that test culture needs to shift to becoming more risk 

accepting rather than risk averse. 

Pinelis noted that the CDAO was working with the 

Office of the Secretary of Defense Director, Operational 

Test and Evaluation, on various AI T&E products that 

would be available throughout DoD (to include T&E 
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DAY 2: MORNING DISCUSSION

The workshop planning committee opened the day with 

a recap and discussion of the previous day. There was 

discussion regarding unknowns, such as the lack of 

ownership regarding liability and requirements. One 

workshop planning committee member commented on a 

contrast in approaches between the CDAO’s office and the 

test squadrons. Shanahan commented that at the end of 

the day, the Air Force has to come in at an Air Force level 

and decide the best way forward—the test center versus 

the warfare center—regarding roles and responsibilities. 

Tamara G. Kolda (MathSci.ai; workshop planning 

committee member) asked if there was a way to audit 

decisions and collect them as AI systems deploy. Coppler 

responded that without hooks in the AI algorithms, 

the test community has no idea how to look into those 

algorithms and understand what they are doing. Kolda 

asked if the inputs and outputs of an AI system are 

logged. Coppler responded that they were. Bieber added 

that it is not always a given that one can check the 

inputs and outputs of an AI in a box. AI might be a larger 

component of the software, and it has a fundamental 

problem: it cannot be instrumented after the fact because 

that might change how the software operates. 

PRACTICAL GUIDE TO AI TESTING

Bieber spoke briefly about his background as a tester 

and his previous work at the Joint Artificial Intelligence 

Center.

Initially, Bieber spoke about metrics and metric 

development. When developing metrics, one needs 

to understand what metrics developers are using, 

understand how program management has defined 

requirements, and understand how to measure 

operational success—that is, the importance of soliciting 

the end user’s assessments of operational performance. 

He also talked about standards and how everyone 

makes their own tools and products. Unfortunately, this 

does not allow much in the way of interchangeability. 

Bieber also talked about tools and the CDAO’s work 

establishing a T&E software factory, as well as its vision 

for developing a “suitcase” test kit, which would allow 

AI T&E in situ. Bieber explained that such a capability 

would not only be invaluable in assessing competency 

has been properly addressed, but that his assessment 

would probably not be the same as what Pinelis described 

in her presentation. Kendrick pointed out that it is 

difficult for a fee-for-service organization to solve 

a problem when they need a contract before hiring, 

tasking, building, and testing are available to address 

the problem. Shanahan observed that a philosophical 

question needs answering at the Air Force level, writ 

large, on establishing “who owns what part” of this 

difficulty and looking into the requirements process. 

Another point was that some of the language used, such 

as F1, F2 scores, ROC curves, and false positives, is new 

for many people involved with Air Force T&E. He noted 

that this is not a typical T&E discussion. He followed 

on by saying that it sounds like the Air Force would like 

these terms to become part of the T&E discussion, but 

wondered how the Air Force builds toward that.

Chellappa and Shanahan discussed how someone would 

know if a new AI system is performing much better 

than what is already out there. This thought was a 

central question for some in figuring out “what is good 

enough?”—something that is still unresolved. Coppler 

commented that during his time on active duty with the 

53rd wing, they would test “good enough” by measuring 

against what they already had. Chad Bieber (CDAO) 

agreed with Coppler and added that there are many ways 

to be good. Coppler jumped back in and posited that if 

an AI/ML algorithm does not perform as expected when 

tested, it may be doing something better than one ever 

thought possible. Longstaff resonated with that point 

and brought up his concern that sticking with the old 

regime of “testing to requirements,” may result in the 

discarding of systems that yield surprisingly better 

results.

A final discussion ensued regarding the testing of large 

systems. Longstaff used JADC2 as an example—once one 

starts incorporating more AI capabilities, the nature of 

the entire system changes. How does one test that and 

begin to think about what to do to test an integrated 

system of that size and scale—an integrated system 

incorporating behavior and change based on how an 

adversary changes?
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(domain adaptation) but would likely also lead to the 

ability to “tune results” under operational conditions. 

He then touched on modeling and simulation (M&S). He 

stated that M&S is vital to AI T&E. He talked specifically 

about the common worry, or complaint, regarding the 

exploding state of the AI space. Bieber does not think of 

that as the biggest problem. AI’s unique problem is that 

it does not understand the performance across that space 

well enough to predict behavior between two points, 

much less outside the area it tests.

Bieber then presented a scenario regarding a dog-

finding uncrewed aerial vehicle (UAV) used by emergency 

services. Within this scenario, he talked about different 

metrics and their uses, such as mean average precision 

(mAP), average precision, Recall, and f-scores. Longstaff 

asked if Bieber could contrast mAP to accuracy. Bieber 

responded that precision, in the computer vision world, 

has a smaller, less overloaded definition than accuracy. 

Casterline and Chellappa discussed the applicability 

of some of the metrics that Bieber mentioned and 

commented that they are very computer-vision-centric. 

Chellappa stressed the need to understand the metrics 

and think more about what would work for AI-based 

systems. The workshop planning committee also 

discussed the idea of an algorithm deployed in the field 

that continuously learns during deployment. Bieber 

mentioned SmartSensor,3 which does have the ability to 

retrain rapidly. Trevor Darrell (University of California, 

Berkeley; workshop planning committee member) asked 

for Bieber’s thoughts on the idea of merging the culture 

of testing and development. He also asked for thoughts 

regarding identifying specific entity labels and not just 

a broad category, such as identifying a T-72 versus a 

tank. Bieber responded that he had seen the opposite 

problem, where they have tried to use computer vision to 

detect too far down the ontological hierarchy. Bieber also 

stressed the need for continuous testing. He stated, “We 

have to have the ability, if we’re doing continuous  

 
3 Smart Sensor is a CDAO project delivering an on-platform, AI-enabled 
autonomy package that allows a UAV to conduct automated surveillance 
and reconnaissance functions in contested environments. Satnews, 
2022, “DoD CDAO Partners with USAF to Conduct Developmental Test 
Flight of AI and Autonomy-Enabled Unmanned Aerial Vehicle,” Satnews, 
https://news.satnews.com/2022/06/23/dod-cdao-partners-with-usaf-
to-conduct-developmental-test-flight-of-ai-and-autonomy-enabled-
unmanned-aerial-vehicle. 

development, to do testing at the same speed as the 

development process.” He also spoke about competency 

testing and the different ways one can do it.

The discussion then shifted to autonomous vehicles and 

testing metrics, such as the number of user interrupts, 

to measure operational performance. Darrell spoke about 

how coming up with a commonsense tool that could look 

at and summarize a performance dump4 could be helpful. 

He also spoke about how it would be valuable to require 

some disclosure and the ability to benchmark against 

open systems. Bieber followed on and spoke about the 

challenges of a black-box system and being unable to 

look inside it. Although he did say that while it would 

be useful to have full access to everything, the financial 

cost of having full access may not be feasible. Darrell 

suggested model cards and documentation confidentiality 

as middle-ground solutions. Bieber stated that the 

CDAO requires model cards. In closing, Kolda and Bieber 

engaged in discussion regarding data sequestration. 

Kolda also asked about model learning and whether the 

models that Bieber’s group receives are already trained. 

Bieber responded that once the algorithm was delivered 

and deployed, it did not change.

ROBUST AND RESILIENT AI

Olivia Brown (Massachusetts Institute of Technology 

[MIT] Lincoln Laboratory [LL]) spoke about how AI 

systems have great promise for DoD. However, they are 

demonstrably brittle and often vulnerable to different 

forms of data corruption, Brown said. She specifically 

named post-sensor digital perturbations as a form of 

corruption. Brown explained that there are sources of 

natural and adversarial forms of vulnerability. A natural 

source could be when an AI model trains on upright 

chairs. When tipped over, the model could suffer a 

significant performance drop. Adversarial forms of 

vulnerability could involve deliberately manipulating 

an image’s pixels, causing the model to fail in correctly 

classifying inputs, according to Brown. 

4 A performance dump of the system is a collection of data from 
a service processor after a failure of the system, an external 
reset of the system, or a manual request. IBM, 2021, “Initiating 
the Performance Dump,” https://www.ibm.com/docs/en/
power9/0009-ESS?topic=menus-initiating-performance-dump.
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Brown then talked about the current way that machine 

models train. First, they undergo a design phase, where 

training data are collected and validated. The model 

then tests on a test data set similar to the one on which 

it trained. The system then deploys. She noted that 

they often observed that performance of the deployed 

system in the operational domain was much worse 

than predicted during the test phase. This degraded 

performance reduces operator and user trust and 

results in the system going offline, reoptimization, and 

ultimately redesign, Brown noted. 

Brown stated that the path to creating a more robust 

system starts at the opposite side of the development 

process. Talking to operators at the beginning of the 

system’s design phase is essential. In this way, the 

developer understands the operational environment into 

which the system will deploy. This awareness allows the 

programmers to consider potential sources of variation in 

the data that the system is likely to encounter. Next, the 

developer should establish a testing process that avoids 

experimenting against a test set similar to the system’s 

training. Instead, one should test against that training 

data’s perturbations or that training distribution. Last, 

Brown advised training the model to perform better 

against perturbed data. Brown then spoke about the 

work at MIT LL in robust AI research that addresses 

new ways to tackle natural and adversarial sources of 

vulnerabilities. Brown highlighted tools like HydraZen5 

and the Responsible AI Toolbox (rAI-toolbox),6 which 

will help Brown’s team at MIT continue its research 

on evaluating AI robustness. The workshop planning 

committee conversation then shifted toward different 

use cases that utilized these tools. Brown concluded 

by describing MIT LL’s next steps in supporting the 

development of robust and responsible AI.

Longstaff asked if there was a way to specify a 

requirement that would allow them to test against the 

requirement once the robustness training was complete. 

He also asked how well the robustness pipeline works 

with non-vision-oriented AI. Brown responded that she 

5 See the Hydra-Zen site, at https://github.com/mit-ll-responsible-ai/
hydra-zen.
6 See the Responsible AI Toolbox site, at https://github.com/
mit-ll-responsible-ai/responsible-ai-toolbox.

does not necessarily have an answer, but that setting the 

requirements is very important. She responded that MIT 

LL was exploring ways to use simulators and to figure 

out how to integrate those into the training process. 

Regarding the second question, Brown stated that MIT 

LL is moving beyond natural images and looking at 

radar and time series. Longstaff followed up and asked 

about data augmentation strategies. Brown responded 

that these strategies exist to train against a single type 

of perturbation, but you will (normally) have a suite of 

them. 

AI TRUST AND TRANSPARENCY

Michael Wellman (University of Michigan) opened his 

presentation with a brief discussion of his past work. 

He started with how trust and transparency are nothing 

new for AI. Trust in an AI system is ill-defined because 

people have different ways of defining it, Wellman 

said. Moreover, trust goes beyond AI systems—it 

applies to any software system or system that generates 

recommendations, information, or decisions. To 

Wellman, however, trust is not a necessary condition 

to use a system. Many instances exist where people use 

technology without understanding its full consequences, 

Wellman said.

Wellman then discussed an example of autonomous 

AI–stock trading. In certain instances, companies have 

employed AI to control large trading accounts that act 

autonomously in financial markets. Indeed, inserting a 

human in the loop is not feasible. By the time a human 

can do anything, the opportunity evaporates. He cited a 

company, Knight Capital, where a software configuration 

error led to a loss of around $400 million that took 

the company down. Nevertheless, even with that kind 

of outcome, people did not stop trusting or using this 

technology, Wellman said.

Wellman then discussed transparency in AI systems. 

Specifically, he spoke about the common approach, 

called the explanation approach, used to interrogate the 

underlying model so that one can explain the decision or 

recommendation it produces. However, this approach has 

some dangers—mainly that it is easy to come up with an 

explanation that seems plausible and could be the reason 
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for an underlying decision, but that might not necessarily 

have a causal connection. Wellman then presented a 

different approach—to limit oneself to models that are 

interpretable in the first place. In other words, the model 

has a certain simplicity or structure that one can discern 

directly—the explanation that the model deduces is 

causally related to an actual decision or recommendation. 

He maintained, however, that it is not always possible to 

do this.

Wellman then introduced strategic domains. This 

approach considers decisions in worlds where the 

outcome depends on other agents’ actions. The finance 

and trading example discussed earlier is one example. He 

mentioned cybersecurity as a strategic domain because 

an attack or defense is always relative to the other 

party’s actions. Negotiation, monitoring, war gaming, or 

anything in conflict is also considered a strategic domain. 

Strategic domains present a transparency challenge—

the decisions made in a strategic situation often 

require unpredictability. So, something like debugging 

is more challenging. Wellman concluded that from a 

designer’s perspective, it requires extra care to preserve 

transparency.

Wellman ended his presentation and opened up the 

discussion. Chris Serrano (HRL Laboratories) pointed 

out that, while we may not have a theorem on whether 

an attacker or a defender of a system will win, there 

is undoubtedly an idea of how the cost grows when 

defending a system versus attacking one. Wellman added 

that cost also determines who wins in the end. Longstaff 

and Wellman discussed counterfactuals and how to 

utilize them in dealing with the issue of inferring intent. 

Wellman explained that using counterfactual queries 

could infer intent—in this instance, identifying whether 

someone is a scammer. Shanahan asked a question 

regarding Wellman’s statement on trust not being a 

prerequisite for adoption. He asked if we are getting too 

detailed or “cute” with some of our existing systems, 

particularly given how basic their capabilities are right 

now. Wellman said he framed his stock trading example 

as a cautionary tale to show that it may not be possible to 

stop a system without full trust or confidence because it 

will be compelling. Sometimes that is worth embracing. 

However, there is always going to be a matter of 

measured risk. Chellappa said that there are four things 

to look at: domain adaptation, adversity of attacks, 

bias, and privacy. Wellman responded with adversarial 

approaches in black-box situations. He said that the risk 

with domain adaptation is that things get deployed in 

situations for which they were not designed. 

EVALUATION OF AI

Thomas Strat (DZYNE Technologies) started by going 

through the background of his company and presented 

some case studies about the types of AI work in which 

DZYNE Technologies is currently involved. 

DZYNE Technologies is a small company that designs, 

builds, and operates autonomous aircraft, Strat said. 

These aircraft can range anywhere from small 6-pound 

aircraft to the largest UAVs that the military currently 

operates. The company also has an AI group of around 

25 individuals who help to deploy AI capabilities on their 

aircraft, Strat said. 

Strat then discussed semantic labeling from satellite 

imagery. Specifically, he talked about determining 

which algorithm is better, given two different image 

classifications. A qualitative approach to answering the 

question is useful because it allows you to look at the 

data from a visual perspective and ask if they represent 

your intuition. A quantitative approach allows one to use 

several metrics to determine accuracy. Strat pointed out 

that while there are many commonly used metrics, there 

is not one single obvious best metric to use in any given 

situation. He then stated that it is seldom clear what 

metrics to use from the outset, which depends on many 

factors. Strat also pointed out that to do an evaluation, 

you must have some form of ground truth to compare it 

to, and ground truth is not always complete and correct. 

The quality of that ground truth makes an important 

difference, he said. Overall, some key challenges concern 

trade-offs between the evaluation metrics that someone 

chooses and the quality of ground truth making a big 

difference. Strat stated that some solutions to help 

with these challenges include having multiple metrics 
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and pretraining a model without annotation. Longstaff 

asked if any metrics explain the quality of ground truth. 

Strat responded that he was not sure, but during his 

time as a Defense Advanced Research Projects Agency 

(DARPA) program manager, they played around with 

that. Chellappa stated that there are some models of label 

noise, but it is hard to figure out how good the ground 

truth is.

Strat spoke about another case study regarding the area 

of building extraction. This case study aimed to highlight 

all of the buildings in an image and use brightness to 

determine building height. Strat pointed out that as one 

gets toward the perimeter of the image, off-axis pixels 

increase. He posed the question, “How do you evaluate 

the accuracy of these data sets?” You do not have ground 

truth that covers city-size areas with any accuracy, 

according to Strat.

Additionally, said Strat, any algorithm’s accuracy will not 

be uniform across something the size of an entire city. 

Cities are not uniform and have many factors that could 

affect the algorithm. For example, he stated that the 

heights of trees in a certain area could affect the ability 

to extract data properly. 

Strat then shifted the discussion toward autonomous 

vehicles. First, he considered how to evaluate progress, 

and that speed may not necessarily be the way to 

measure that. He then talked about the DARPA Grand 

Challenge. This challenge aimed to put autonomous 

vehicles to the test in a real-world environment—in 

particular, an operationally relevant environment such 

as a desert. Strat said that he favors attempting system-

level tests in operational environments whenever 

possible, as he believes that there is nothing more 

convincing than doing that. He then covered autonomous 

aircraft—specifically, a long-endurance air platform 

(LEAP). LEAP has been in operation since 2016 in the 

Middle East in numerous combat operations. First, it 

was evaluated and tested using simulation and takeoff 

tests at military bases. LEAP then moved on to formal 

operational assessments in theater in the hands of the 

military, where it has been continually reassessed since 

its first use. At this point, Strat said, it has amassed more 

than 50,000 hours of operational use by the military in 

the Middle East. Strat then talked about the mishaps. 

Most of them have been mechanical, some were owing to 

hostile action, and a number were attributed to operator 

error or the human in the loop. According to Strat, zero 

mishaps were attributed to the AI error. Instead, when 

the operators did not trust the AI, problems occurred, 

such as intervening in the aircraft’s landing approach. 

Last, Strat presented a final video showing off ROBOPilot, 

an autonomous system that can fly an airplane. Over 

the span of a few years, the system was developed and 

trained by Strat’s team to fly an airplane with no human 

in the cockpit. Strat then spoke about the potential 

application of this robotic technology for the military. 

Chellappa asked for Strat’s assessment of the efficacy 

of simulations. Strat stated that the answer to whether 

it is useful for AI algorithms is complicated, but why 

would it not be? The more veracity the simulation has, 

the less reason there is to doubt its efficacy for training 

or evaluating AI algorithms. Longstaff asked about 

ROBOPilot and how it compares to the full auto function 

that a 787 Max has. Strat responded that there is a 

market for autonomous flight. He specifically mentioned 

aircraft that may have been deemed unsafe for human 

flight. Strat also said that fly by wire is the way to go and 

that he would not necessarily put ROBOPilot up against 

a fully integrated autopilot system. He ended his talk by 

briefly discussing how interfacing with a human being 

is one of the most difficult challenges for AI because the 

human brain is so complex. It is much easier to interface 

with physics than it is with humans. As such, the 

ROBOPilot program is a much easier challenge to solve 

than what DARPA set out to do with the ALIAS program.

ASSURANCE: THE ROAD TO AUTONOMY

Jim Bellingham (Johns Hopkins Institute for Assured 

Autonomy) discussed his background in marine robotics 

and autonomous marine vehicles. He also talked 

extensively about the application of AI and autonomy in 

many vehicles that he had helped develop and utilize. In 

this talk, he also referenced several tools.
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Bellingham explained that autonomy is everywhere: 

finance, logistics, military systems, the medical 

environment, and others. The big problem is assurance. 

He explained that for industry, it is a trade-off between 

assurance and ensurance. He also said that assurance is a 

key to accelerating AI and autonomy. 

Bellingham wrapped up his presentation by stating 

that robotics and autonomy will transform society. He 

reviewed some current societal drivers regarding future 

conflict, such as the lack of guidelines for managing 

escalation and the changing geography for future conflict 

(land, sea, air, space, cyber, etc.). Bellingham also 

shared that an enormous amount of research needs to 

be done regarding the connection between humans and 

AI. He ended by noting that getting ahead of the curve is 

important to slow down adversaries. 

AI: CURRENT AND FUTURE CHALLENGES

Matt Turek (DARPA) began discussing current AI 

breakthrough applications, such as AlphaGo, DeepBlue, 

and more. However, even with all of this success, we 

may not be on the right trajectory with AI. For example, 

he brought up self-driving cars—specifically Tesla’s 

autopilot feature, and how it relies on computer vision, 

not multimodal sensing. He also spoke about how even 

when autopilot mode is engaged, Tesla holds the human 

drivers responsible. He continued by saying that users 

are not at a point where they can reliably delegate critical 

decisions to autonomy. He mentioned that some people 

have been excited in parts of the AI/ML community—but 

they are not working in ways comparable to humans. 

He noted that state-of-the-art large language models 

lack basic comprehension, fail to answer simple but 

uncommon questions or match simple captions and 

pictures, do not understand social reasoning, do 

not understand psychological reasoning, and do not 

understand how to track objects. 

Turek then commented on his belief that the evaluation 

of AI/ML systems is broken. He talked about how we 

are chasing very narrow benchmarks and optimizing 

performance against those benchmarks. According to 

Turek, this just reinforces the building of narrow and 

relatively fragile AI systems. He then spoke about how 

current evaluation techniques do not encourage AI/ML 

systems to generalize. He also explained how current 

evaluation techniques do not reveal AI/ML fragilities. 

Turek identified how DoD needs do not align with the 

focus of the AI/ML industry, as follows:

Industry is profit-driven, has access to massive amounts 

of data, has a low cost of errors, and faces threats from 

commercial adversaries. DoD is purpose-driven, has 

access to limited amounts of data, has a high cost of 

errors, and faces threats from active nation-state-level 

adversaries. 

Turek then highlighted what may be possible as future 

national security–relevant capabilities:

• Trustworthy autonomous agents who sense and 

act with superhuman speed and can adapt to new 

situations; 

• Intuitive AI teammates who can communicate 

fluently in human–native forms; 

• Agents that promote national security; and

• Knowledge navigation for intelligence and 

accelerating defense technology development. 

To realize some of these capabilities, Turek stressed the 

importance of investment in AI engineering, human 

context, and theory to help build robust DoD AI systems. 

Turek closed by stressing the importance of: 

• Developing theories of deep learning and ML; 

• Measuring real-world performance by developing 

a rigorous experimental design that measures 

fundamental capabilities and produces generalizable 

systems;

• Focusing not only on performance but also on 

resource efficiency;

• Developing compositional models using principles 

approaches to exchange knowledge; and
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• Developing appropriately trustable AI systems 

that have predictable adherence to agreed-upon 

principles, processes, and alignment of purpose. 

Shanahan responded to Turek’s comment that the trial-

and-error approach to AI testing is no longer acceptable 

by saying that human beings do an awful lot of trial-

and-error learning. He then asked if DARPA has been 

looking at hybrid approaches to solving the AI T&E 

problem. Turek responded that DARPA is interested in 

hybrid AI, particularly across statistical and symbolic 

approaches. Last, Longstaff asked Turek if we are going 

in the right direction in regard to making advances in the 

fundamentals of AI. Turek responded that he does not 

have a magic solution, but that his team is trying to set a 

vision for things that they think need to be done. 

HUMAN AI: TEAMING IS UBIQUITOUS

Nancy Cooke (Arizona State University) was the day’s 

final speaker. She began by discussing human-AI 

teaming. She stated that AI could not be effectively 

developed or implemented without consideration of 

the human. AI does not operate in a vacuum and will 

interface with multiple humans and other AI agents. 

Cooke then spoke about different aspects of teaming, 

specifically regarding team composition and role 

assignment, processes, development, and effectiveness 

measurement. She then talked about the Synthetic 

Teammate Project on which she is working. The project’s 

objective is to develop a synthetic AI teammate to take 

the place of air vehicle operators and work with two 

humans in the remotely piloted aircraft system task, 

Cooke said. 

Cooke affirms taking human–machine teaming 

seriously. She defined a team as two or more teammates 

with heterogeneous roles and responsibilities who 

work independently toward a common goal. She then 

commented on what is currently known regarding 

human–AI teaming. Her first point was that team 

members have different roles and responsibilities and 

that this argues against having AI replicate humans. It 

also upholds that narrower AI allows AI to do what it 

is best at, such as big data analytics and visualization 

for humans. Her second point was that effective teams 

understand that each member has different roles and 

responsibilities that avoid role confusion but back each 

other up as necessary. Cooke stated that AI should 

understand the whole task to provide effective backup. 

Her third point was that effective teams share knowledge 

about the team goals and the current situation; over time, 

this facilitates coordination and implicit communication. 

Cooke stated that human–AI team training should be 

considered and that we should not expect a human to be 

matched with an AI system and immediately know how 

to work well together. Her fourth point was that effective 

teams have team members who are independent and 

thus need to interact or communicate, even when direct 

communication is not possible. Cooke said this argues 

not necessarily for natural language but maybe some 

other communication model. The fifth thing we know is 

that interpersonal trust is important to human teams. 

Cooke stated that AI needs to explain, provide a reason 

for its decision, and be explicable.

Cooke then spoke about the challenge with human–

AI teaming. She stated that research on human–AI 

teaming cannot wait until AI is developed; it is then too 

late to provide meaningful input. Instead, a research 

environment, or testbed, is needed to get ahead of 

the curve and conduct research that can guide AI 

development. She then discussed different examples 

of physical and virtual synthetic test environments. 

Next, she introduced a concept called the “Wizard of 

Oz” paradigm in which a human plays the role of the 

AI or even remotely operates a robot to simulate very 

intelligent AI in a task environment. She also spoke about 

the importance of measures and models when measuring 

different aspects of human–AI teaming effectiveness. 

Longstaff asked, regarding the Synthetic Teammate 

Project, how she would write a requirement for someone 

else to develop that pilot program? He also asked how 

she would test what she got back from the developer 

to know if she got the right product. Cooke responded 

that she would write down the details and results about 

her team’s experiment and say, make it better so that 

it succeeds. She also stated that they would test it the 
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same way her team tested it the first time. Robin R. 

Murphy (Texas A&M University; workshop planning 

committee member) jumped in and asked if the way 

to ensure that the synthetic agent is aware of its team 

responsibilities would be to develop an Adaptive Control 

of Thought—Rational model of the entire operational 

space. Cooke responded that she thinks so. Chellappa 

asked how she sees human–AI as different, better, or 

more complicated than human–computer interaction 

(HCI). Cooke responded that much is known about 

human systems integration that can be brought to bear 

on human–AI systems that people do not consider on 

HCI when one person is interacting with a product. 

She also stated that HCI had not done much in massive 

system areas such as JADC2. Shanahan asked if Cooke 

had a separately controlled experiment where it was a 

three-AI team with no humans involved. He also asked 

if there were any takeaways regarding their work with 

HSI. Cooke responded that they had not done any three-

agent teaming. She also stated that one of her takeaways 

was that AI is too often optimized on task work when 

it is important, in these complex systems, to optimize 

teamwork. Casterline commented that there are concepts 

of multiple agents being able to learn how to work 

better to serve an objective function in robotics, game 

theory, and more. Robin Murphy asked about metrics. 

Specifically, how can they estimate whether one team is 

more likely to produce the right answers than another? 

Cooke responded that they have metrics and are trying to 

develop more, such as domain-independent measures. 

Longstaff and Cooke talked about AI training in the 

context of human–animal teaming. Robin Murphy asked 

about the feasibility of predicting the performance of a 

human–AI team. Cooke responded that she could not 

think of a way to do it without seeing them perform, 

potentially in a training scenario. 

DAY 2: WRAP-UP DISCUSSION

Casterline started the day’s wrap-up discussion by 

stating that she found it interesting how one presentation 

spoke about how people will not really be able to trust 

AI, so they just have to accept the risk, versus when AI 

trust is really a requirement and more rigor is necessary. 

David S. Rosenblum (George Mason University; workshop 

planning committee member) said that he was struck by 

the fact that many presentations made it seem hard to 

separate any discussion of T&E from the requirements 

against which the T&E is being performed. Owing to 

the narrow statement of task, Rosenblum questioned 

the extent to which the workshop planning committee 

would be concerned about saying anything about 

requirements. The workshop planning committee also 

broadly discussed the inability to avoid the question or 

discussion surrounding requirements when it comes 

to T&E. The workshop planning committee also spoke 

about other sectors where the consequences of AI would 

be high. Serrano mentioned that the question of liability 

resonated with him throughout the day and that we 

build these systems of systems inside some organization 

designed by committee. He asked, “Who is going to 

take ownership for how this thing should perform?” 

The workshop planning committee ended the day by 

discussing the break between what happens in the 

development community and the research community. 

VERTICAL DATA SCIENCE 

Bin Yu (University of California, Berkeley) defined vertical 

data science as the process of extracting reliable and 

reproducible information from data with an enriched, 

technical language to communicate and evaluate 

empirical evidence in the context of human decisions 

and domain knowledge. Yu introduced the predictability, 

computability, and stability (PCS) framework. She stated 

that PCS is a way to unify, streamline, and expand on 

ideas and best practices in both ML and statistics. She 

also spoke about the importance of documentation.

Yu broke down each part of the PCS framework. 

Concerning problem formulation, predictability 

reminds us to keep in mind future situations where 

AI/ML algorithms will be used while developing AI/

ML algorithms. Concerning data collection and data 

comparability, predictability reminds us to keep in mind 

future situations where AI/ML algorithms will be used 

while developing AI/ML algorithms. Concerning data 

comparability, stability reminds us to keep in mind that 

there are multiple reasonable ways to clean or curate a 

given data set from the current situation. Regarding data 
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partitioning, stability reminds us to keep in mind that 

there could be multiple reasonable ways to partition a 

given data set from the current situation to ensure that 

the test set is as similar to future situations as possible. 

Last, regarding other forms of data perturbations, 

stability reminds us to keep in mind that data 

perturbations should reflect future situations. 

Regarding comparing different predictive techniques, 

Longstaff asked if any quantitative measures were 

currently incorporated into the framework to help 

choose the best algorithm or technique. Yu responded 

by identifying two measures, sensitivity and specificity. 

Longstaff followed up by asking how to reason about 

the trade-offs between predictability and stability. 

Yu responded that her team screens for predictive 

performance before seeking stability. Casterline and Yu 

discussed translating operational requirements into the 

mathematical statistics to which Yu referred. Shanahan 

asked about justified confidence and how doctors and 

nurses attain that. Yu responded that it is important 

to understand their work and profession as much as 

possible when developing models. Kolda and Yu talked 

about embedding T&E with operations. Yu ended her talk 

by speaking about the importance of documentation and 

metrics. 

AN APPLIED RESEARCH PERSPECTIVE ON ADVERSARIAL 
ROBUSTNESS AND TESTING

Nathan VanHoudnos (Software Engineering Institute) 

spoke about AI security and making systems do the 

wrong thing. First, he introduced the Bieler taxonomy, 

where an adversary can make you learn, do, and reveal 

the wrong thing. Next, he compared these different 

things to data poisoning, adversarial patches, model 

inversion, and membership inference attacks. He then 

stated that in their laboratory, they focus on training 

systems to learn correctly, do things correctly, and not 

reveal secrets. Next, when it comes to verifying a system, 

VanHoudnos spoke about their “Train and Verify” 

project, where they try to make robust ML systems that 

do not reveal secrets, as well as private ML systems 

that are not fooled as easily. Last, he introduced several 

other projects focusing on protecting systems from many 

adversarial techniques mentioned above.

VanHoudnos defined AI corruption as a decrease in a 

quality attribute of an AI system. He then spoke about 

the different roles played by different people as teams 

try to accomplish different missions. The discussion 

then shifted toward evaluating ML models—specifically, 

the evaluations should reflect how models will be used 

in practice and specific scenarios of importance to the 

application of the model. Thought should also be given 

to metrics you care about when evaluating. Chellappa 

commented that one of the reasons he thinks many 

benchmarks are averages is because there is a desire to 

avoid somebody optimizing the algorithm for just one 

point on the plot that may be operationally relevant. 

VanHoudnos then spoke about different examples of 

AI corruption. Casterline and VanHoudnos discussed 

adversarial patches in classification and the idea of 

using an adversarial patch to test against a retrained 

model. Casterline compared it to a cat-and-mouse 

game and wondered if this is truly the right approach, 

to constantly devise counterattacks for the continual 

stream of adversarial attacks that continue to evolve 

no matter what is done. Longstaff asked where in the 

requirements process they would know that a certain 

quality attribute of an AI-enabled system will be tested. 

VanHoudnos responded that he would have to defer to 

the DevSecOps folks. Longstaff followed and provided his 

thoughts on the question: creating the quality attributes 

is a collaboration between a team of operators, testers, 

and development folks. VanHoudnos wrapped up by 

discussing the concept of justified confidence7 with 

Longstaff.

DEFENDING AI SYSTEMS AGAINST ADVERSARIAL ATTACKS 

Bruce Draper (DARPA) began his presentation by talking 

about different types of adversarial attacks against data 

models. He then spoke about algorithmic defenses for AI 

systems—specifically, regarding five best practices. 

The first best practice discussed was cyber defense. 

Draper stated that networks are vulnerable, and most AI 

systems are attached to a network. He also stated that 
7 Justified confidence is about developing AI systems that are robust, 
reliable, and accountable, and ensuring that these attributes can be 
verified and validated. Northrop Grumman, 2021, “AI Development 
Aligns with US Department of Defense’s Ethics Principles,” https://news.
northropgrumman.com/news/features/northrop-grumman-building-
justified-confidence-for-integrated-artificial-intelligence-systems. 
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it is relatively easier to attack a network than an AI. 

Therefore, he suggested that to defend the AI, the focus 

must be on defending the network. 

The second best practice discussed was protecting the 

input data—specifically, sensor-inspired data. Draper 

described two types of attacks, one revolving around 

having access to the actual digital signal, which makes 

spoofing very easy. The other type of attack is physical. 

These attacks revolve around altering items in the 

physical world to trick a system. Draper noted that 

physical attacks are harder for an adversary to launch 

and easier to defend. He ended by stressing the idea of 

protecting your data. 

The third best practice was about collecting inputs from 

multiple sources. Draper stated that it is harder to spoof 

multiple sensors than one sensor. He also noted that 

different types of sensors make it even harder to disrupt, 

and having different instances of sensors also offers 

some benefits. 

The fourth best practice discussed was about protecting 

model development. Draper urged everyone to be wary 

of externally acquired models. They may have back 

doors, either unintentionally or from poisoning, and if 

an adversary has access to the model, it enables white-

box attacks. Draper also stated that when training your 

models, you should avoid using untrusted training data, 

avoid boot-strapping from untrusted models, and keep 

information about training data private.

The fifth best practice was quality assurance post-

fielding. Draper advised, when possible, to have a person 

double-check sampled AI outputs. 

Draper then spoke about how one can increase system 

robustness. He introduced a few methods, such as 

adversarial training and randomized smoothing. 

Adversarial training is when you attack your sample 

during the training process. It does not slow you down 

at runtime but slows training. Randomized smoothing is 

where you wait to get the input and then make different 

versions of that input. It has the opposite pros and cons, 

where it makes training faster but will slow you down at 

runtime. Draper noted that both of these methods require 

a known threat model. The danger is that if the adversary 

does something you do not anticipate, these methods will 

not work. Draper also spoke about some methods against 

physical attacks, such as tile-based defenses and patch 

detection defenses. 

Draper ended his talk by speaking about evaluation 

software and tools. He concluded with DARPA’s 

Guaranteeing AI Robustness Against Deception Armory, 

an evaluation tool that allows analysts to run adversarial 

AI experiments at scale quickly and repeatedly. 

RECOGNITION SYSTEM EVALUATION

Ed Zelnio (Air Force Research Laboratory) spoke about 

imaging systems and the different types of data: 

sensor data, metadata, and labels. He also spoke about 

labeling—specifically, regarding granularity. Zelnio 

then spoke about different categories of target data and 

introduced the categories in library mission targets, 

library confusers, out-of-library confusers, and clutter. 

He also went over the difference between developmental 

and operational data.

Zelnio introduced “some things that would be nice 

to measure in terms of evaluation.” He spoke about 

measuring the reliability and confidence in a system, 

measuring understandability and trust of a system, 

measuring the robustness of a system, measuring the 

effectiveness of out-of-library confusers, measuring the 

performance of a performance model, figuring out what 

to do with limited data, and the need to talk about a 

sustainable end-to-end training process.

Zelnio ended by speaking about best practices. The 

first best practice is coming up with an expectation 

management agreement. These tell you under what 

operating conditions you can expect a given system 

to work. The second best practice is the use of a test 

harness than can help to reproduce training and aid in 

evaluating the algorithm and the training process. Last, 

the third best practice is testing to break, to see what 

does and does not work.
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Longstaff asked what has helped get customers over the 

barrier that allows them to increase their confidence 

in using an experimental system in an operational 

environment. Zelnio responded that the expectation 

management agreements are important in increasing that 

confidence. He also spoke about keeping demonstrations 

as relevant as possible to excite operators. Longstaff 

also asked if they could receive additional feedback from 

an operational customer over time that would allow 

retraining or retesting opportunities. Zelnio responded 

that it would be great to have a laboratory in the loop to 

help with this, but it happens more informally. 

AFTC AI INFRASTRUCTURE NEEDS

Eileen Bjorkman (AFTC) was the workshop’s final 

speaker. Bjorkman spoke about AFTC’s current objective 

of looking at the unique infrastructure needs within the 

test center and across different organizations to set itself 

up to test autonomous systems. 

Bjorkman spoke about three main things to think about 

in the testing process. First, test safety, particularly in 

making sure that an operator can contain a system if 

it begins to perform in ways that they do not expect. 

Second, early tester involvement and how testing 

strategies must be built into system design. The final 

need revolved around test infrastructure—specifically, 

instrumentation, data collection and storage, and range 

support. 

Bjorkman also spoke about current T&E needs and 

how there is no enterprise-level T&E infrastructure to 

support autonomy testing. She also stated that there is 

no DoD enterprise-level software T&E infrastructure that 

supports the testing of AI. She then spoke about different 

investment areas that she thinks need to happen. These 

investment areas focused on architectures, frameworks, 

modular subsystems, data management, virtual ranges, 

agile workforce, and surrogate platforms, Bjorkman said. 

Bjorkman ended by discussing an autonomous system 

and AI roadmap that showed funding for different 

programs over a 7-year timeline. Next, Casterline and 

Bjorkman began discussing the use of simulation work in 

their virtual environments. Longstaff asked if they have 

begun incorporating digital twins work into the testing 

process for autonomous systems. Bjorkman responded 

that she had seen that happening. Next, Shanahan, 

Casterline, and Bjorkman discussed data and the use 

of virtual testing environments. Bjorkman commented 

on how you cannot get enough replications of things 

in the real world to test a system fully. She posed an 

example about autonomous cars and how you cannot 

just go and drive every road 100 times. She also pointed 

out how often she has observed so many different tests 

that they perform where they cannot collect anywhere 

near sufficient live data. As a result, it forces them into a 

virtual or even a constructive environment. 

WORKSHOP WRAP-UP AND DISCUSSION

The workshop planning committee began its wrap-up 

by discussing its final thoughts from the workshop. 

Casterline commented that she does not think that any of 

the systems are prepared for the iteration that they will 

have to facilitate. She also said that there is a lot to “grab 

from” and apply here regarding the DevSecOps model for 

software. Shanahan commented about the culture shift 

of iteration and adaptability. If the Air Force does not 

get that right, everything else is just another discussion 

about T&E. Chellappa commented about the idea of a 

centralized facility to test AI. He also commented that 

he does not think that we know what it means to test AI 

right now. He specifically pointed out the metrics mAP 

and Recall and commented how these are ideas from 

the 1970s. He questioned why they had become a metric 

for current AI systems. Kolda wanted to stress that not 

everything is in the data. She also warned against the 

idea of trusting AI too much.

Additionally, Kolda commented that humans need to 

evaluate the answers that come out of an AI system and 

not just blindly accept them. Casterline commented 

about a gap in the vernacular between algorithmic 

tests and measurements and operational relevance and 

tests. Kolda questioned how the process of continuous 

integration, evaluation, and feedback would work. Last, 

Robin Murphy offered her thoughts and spoke about 

how human work processes need to be considered in the 

discussion regarding AI corruption. She also commented 

about her fear that security is viewed as an algorithmic 
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problem and that it is just going to come up with another 

algorithm that will detect when the AI is not working 

correctly. 

Longstaff discussed the major questions from the 

statement of task. His first point, regarding the task 

of evaluating and contrasting current T&E, was that 

there is very little overlap between the way T&E is done 

commercially and the way that the workshop planning 

committee experienced it through the examples in 

the workshop presentations. Next, he focused on AI 

corruption and stated that the third question from the 

statement of task goes beyond being just a scientific 

technology question. It could also ask how DoD and the 

Air Force can improve the nature of how technological 

advances are incorporated. Rosenblum commented that, 

regarding the third question, he is worried that anything 

the workshop planning committee says will be outdated 

in a year or two owing to the rapid pace of technological 

change. Longstaff responded and stated that the 

workshop planning committee could point toward 

general trends instead of specific scientific advances. 

Last, Longstaff thanked everyone for their contributions, 

and staff member Ryan Murphy officially closed the 

workshop.
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